
Master’s Thesis

A physically based FRP Sandwich
Model implementing the Resin
Uptake of Balsa Wood as Core

Material

Tobias Otten
Matr.-Nr.: 458359

11. September 2020

Betreut von:
Prof. Dr.-Ing. Jörn Harder

(betreuender Professor)

Dr. Alexandros Antoniou
(Fraunhofer-Institut für Windenergiesysteme IWES)

FH Aachen - University of Applied Sciences
FB6 Aerospace Engineering



Eidesstattliche Erklärung
Ich versichere hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig ver-
fasst und keine anderen als die im Literaturverzeichnis angegebenen Quellen benutzt
habe.

Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder noch nicht veröffentlichten
Quellen entnommen sind, sind als solche kenntlich gemacht.

Die Zeichnungen oder Abbildungen in dieser Arbeit sind von mir selbst erstellt worden
oder mit einem entsprechenden Quellennachweis versehen.

Diese Arbeit ist in gleicher oder ähnlicher Form noch bei keiner anderen Prüfungs-
behörde eingereicht worden.

Ort, Datum Unterschrift

II



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Company: Fraunhofer Institute for Wind Energy Systems (IWES) . . . 3
1.3 Composite Sandwich Structures in Wind Turbine Blades . . . . . . . . 4
1.4 Vacuum Assisted Resin Transfer Moulding (VARTM) . . . . . . . . . . 6
1.5 State of the Art/Related Work . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Scope and Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Theoretical Work 10
2.1 Microscopic Structure of Balsa Wood . . . . . . . . . . . . . . . . . . . 10
2.2 Modelling of Balsa Wood Cell Geometries . . . . . . . . . . . . . . . . 16
2.3 Resin Uptake Modelling Approaches . . . . . . . . . . . . . . . . . . . 21

2.3.1 Geometrical Approach . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Approaches on Penetration Depth . . . . . . . . . . . . . . . . . 23
2.3.3 Smearing Method . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Application of the Smearing Method . . . . . . . . . . . . . . . . . . . 28
2.4.1 Calculation of Mass . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.2 Calculation of Stiffnesses . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Classical Laminate Theory (CLT) . . . . . . . . . . . . . . . . . . . . . 43
2.6 Four Point Bending Test Configuration . . . . . . . . . . . . . . . . . . 50

2.6.1 Engineer Standards and Load Distribution . . . . . . . . . . . . 50
2.6.2 Bending Line Theory . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Experimental Methods and Procedures 57
3.1 Research on Balsa Wood Material Behaviour . . . . . . . . . . . . . . . 57

3.1.1 Wood Moisture . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.2 Vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.1.3 Resin Infusion and Curing . . . . . . . . . . . . . . . . . . . . . 61

III



3.2 Four Point Bending Test . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.1 Test Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.2 Manufacturing and Geometry of Specimens . . . . . . . . . . . . 62
3.2.3 Experimental Set-Up . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.4 Test Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.5 Determination of Mass and Stiffnesses . . . . . . . . . . . . . . 67

4 Experimental Results on Balsa Wood Material Behaviour 71
4.0.1 Wood Moisture . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.0.2 Vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.0.3 Resin Infusion and Curing . . . . . . . . . . . . . . . . . . . . . 74

5 Model Validation 77
5.1 Comparison of Model Results and Experimental Results . . . . . . . . 77
5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Conclusion and Future Research 87

IV



List of Figures

1.1 Blade profile [6, mod.] . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Sandwich structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 VARTM infusion process . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Coordinate systems of balsa trunk and balsa plate [10, mod.] . . . . . . 12
2.2 SEM micrograph of balsa wood [13] . . . . . . . . . . . . . . . . . . . . 12
2.3 SEM micrograph of a vessel cell: (a) view on xy-plane (b) view on

lateral plane [13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Ray cells: (a) view on xy-plane (b) view on lateral plane [13] . . . . . . 14
2.5 SEM micrograph and model of fiber cells: (a) view on xy-plane (b) view

on lateral plane [13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Vessel cell model: (a) 3D view (b) cross-sectional view A . . . . . . . . 17
2.7 Ray cell model: (a) 3D view (b) cross-sectional view A (c) detail view B 18
2.8 Fiber cell model: (a) lateral cross-section (b) cross-sectional view A (c)

detail view B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.9 Resin-filled cell types for the geometrical approach: (a) vessel cell (b)

ray cell (c) fiber cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.10 Nickel’s approach on penetration depth . . . . . . . . . . . . . . . . . . 24
2.11 RVE of the resin-infused balsa plate . . . . . . . . . . . . . . . . . . . . 28
2.12 RVE for the smearing of density . . . . . . . . . . . . . . . . . . . . . . 30
2.13 RVE for the smearing of stiffnesses . . . . . . . . . . . . . . . . . . . . 32
2.14 RVE in xy-plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.15 Shear deformation of RVE in xz-plane . . . . . . . . . . . . . . . . . . 38
2.16 Shear deformation of RVE in xy-plane (here: y-displacement) . . . . . 41
2.17 Plane stress on multi-layer composite and layer numbering . . . . . . . 45
2.18 Test build-up according to ASTM C393 . . . . . . . . . . . . . . . . . . 53

3.1 Top and side view of a specimen . . . . . . . . . . . . . . . . . . . . . . 64
3.2 Experimental set-up with installed sandwich specimen . . . . . . . . . . 66

V



3.3 Test configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 Dimension change gradient for medium-density balsa . . . . . . . . . . 72
4.2 Moisture content in relation to vacuum exposure time . . . . . . . . . . 74
4.3 Photographs of plate A: (left) before infusion (right) after infusion and

curing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Force vs. vertical displacements (specimen no. 10) . . . . . . . . . . . . 79
5.2 Force vs. strains (specimen no. 10) . . . . . . . . . . . . . . . . . . . . 80

VI



List of Tables

2.1 Dimensions, volume fraction and solid fraction of main cell types in
balsa wood of different densities [13] . . . . . . . . . . . . . . . . . . . . 15

2.2 Loading configurations according to ASTM C393 . . . . . . . . . . . . 52

3.1 Density classes for wood moisture experiment . . . . . . . . . . . . . . 59
3.2 Specimens’ geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Measured slit widths of plate C in longitudinal and transverse direction 75

5.1 Mass results from experiment vs. model results (infusion of pure balsa
plates) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Masses: experiment vs. model . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Bending stiffnesses: experiment vs. model . . . . . . . . . . . . . . . . 83
5.4 Transverse shear stiffnesses: experiment vs. model . . . . . . . . . . . . 84

VII



List of Abbreviations

IWES Institute for Wind Energy Systems

BWE Bundesverband WindEnergie e.V.

VARTM vacuum assisted resin transfer moulding

LCOE levelized cost of energy

SS suction side

PS pressure side

LE leading edge

TE trailing edge

FRP fiber-reinforced polymer

GFRP glass-fiber reinforced polymer

PVC polyvinyl chloride

PET polyethylene terephthalate

LCM liquid composite moulding

CLT classical laminate theory

DIN Deutsches Institut für Normung

ASTM American Society for Testing and Materials

UD unidirectional

DTU Technical University of Denmark

SEM scanning electron microscope

RVE representative volume element

LD low-density balsa

MD medium-density balsa

VIII



HD high-density balsa

LVDT linear variable differential transformer

FVC fiber volume content

FMC fiber mass content

IX



1 Introduction

This first chapter is meant to introduce the reader to the overall topic of industrial wind
energy usage and further to specify the issue that is dealt with in this thesis. It begins
with the motivation behind the thesis and a short explanation of the company where
the thesis has been performed. Then, the usage of composite sandwich structures in
wind turbine blades and the manufacturing process is described. Afterwards, the state
of the art concerning the modelling of balsa wood with reference to related work is
presented. An existing model for sandwich composites with a rigid foam core is briefly
described, as it is the basis for the balsa core model, which is derived within this work.
The chapter closes with stating the scope and finally the research goals of this thesis.

1.1 Motivation

Electrical energy is an essential need that has to be satisfied and the usage of renewable
sources of energy is indispensable regarding the anthropogenic climate change. In order
to replace fossil fuels by renewable energy sources, already existent technologies have
to be enhanced to increase economical effectiveness in a relatively short amount of
time. Additionally, the source of energy has to be sufficiently available.
Wind energy is one of the most available renewable energy sources in Germany,

especially in the northern coastal regions. Hence, there has been a vast expansion
of wind energy turbines in that regions both onshore and offshore. According to the
Bundesverband WindEnergie e.V. (BWE), the total number of wind energy turbines in
Germany equals to 30,925 (status: February 2020). With a total power of 61.428GW,
wind energy systems contribute 24.4% to the total net production of electrical power
in Germany. In 2019, thereby, wind energy outruns brown coal for the first time and
becomes Germany’s most important source of energy [1].
During the last 40 years of wind energy system development a trend can be seen

concerning the size of wind energy turbines towards larger wind turbines [2]. An in-
crease in the size of the wind turbine basically means an increase in height and in

1



1 INTRODUCTION

rotor blade length. In 1983 the average blade length was about 10m. Nowadays rotor
blades with up to 80m or more have been built. One reason for this development is
the fact that the generated power is proportional to the circular flow-through area of
the wind turbine. Thus, a larger diameter leads to a higher power generation, assum-
ing enough wind is available. Additional reasons are mainly driven by effectiveness,
costs, maintenance and logistics. For example, in higher altitude there is more wind
available, which increases the effectiveness. More effective larger wind turbines might
replace a higher number of smaller wind turbines, which will then lead to less effort
in maintenance. As explained later in this chapter, larger wind turbines rotate at
lower speed. This is more quiet and calm to watch, so it increases the acceptance of
wind turbines among residents. With regard to offshore sites, the enormous effort of
transport and installation is only worth it using big sized rotor blades.
The sizing towards larger rotor blades has been done with respect to the theory

of similarity, based on experience [3]. Accordingly, the upsizing process obeys the
following aspects:

• maintaining of the tip speed ratio λ
• maintaining of aerodynamic profiles, blade number and material
• change of all dimensions to the same ratio, i.e. using the same scaling factor

The tip speed ratio λ is the ratio of the circumferential tip speed u and the wind
speed v. Maintaining this ratio means a reduction of the angular speed of wind
turbines with higher blade length. With regard to these sizing rules, the aerodynamic
loads are increased proportionally to the square of the multiplier, whereas the mass
is proportional to the cube of the multiplier. This square-cube law indicates, that
research on proper mass estimation is highly relevant in the design and sizing process
of rotor blades.
The conditions named above lead the developing and manufacturing wind energy

industry to the focus on lighter, high-performance materials to further reduce the
levelized cost of energy (LCOE), i.e. the cost of producing electrical energy over a
wind turbine’s lifetime. Due to large differences in dimensions of test material and
the finished parts, blade design involves risks and uncertainties that have to be faced
with validated models, which are able to predict structural parameters and material’s
performance. Hence, they are enhancing the risk reduction during the service life of a
turbine [4, Material and component testing].
With respect to the actual topic of this thesis the enormous importance of mass

estimation is stated by the fact that a proper estimation significantly depends on
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1 INTRODUCTION

the amount of absorbed resin that penetrates the core of sandwich structures of a
rotor blade. About 75% of the skin area are designed as sandwich structures [3]
and the density of resin is way higher than the density of balsa wood. Modelling
this resin uptake in a manner close to reality will contribute to the strengthening
of wind energy utilization. An additional purpose of the model is the quantitative
calculation of the stiffnesses of the resin-infused core, especially the shear stiffness
and the bending stiffness. It can be assumed that the resin-filled core shows up an
increase in stiffness. Models with proper predictions could help to use this higher
stiffness within the rotor blade design in order to optimize the stiffening structure to
gain further weight reduction.

1.2 Company: Fraunhofer Institute for Wind
Energy Systems (IWES)

The Fraunhofer Institute for Wind Energy Systems (IWES) is part of the Fraunhofer-
Gesellschaft, which is a German research organization undertaking applied research
for the purpose of economic development and contributing to the benefit of society [4,
About us]. Founded in 1949, there are currently in total 74 institutes and research
units in the Fraunhofer-Gesellschaft working in international collaborations with ex-
cellent research partners around the world and covering today’s new innovative tech-
nologies. Those worldwide partnerships ensure direct access to regions of the greatest
importance in order to make new technologies affordable and applicable. In particular
the institutes of the Fraunhofer-Gesellschaft play an important role in Germany and
Europe by strengthening the technological base and thus the economical acceptance
of new technology. Furthermore its work includes the education and training of the
future generation of scientists and engineers [5].
The Fraunhofer IWES was founded in 2009 and thus it is one of the youngest insti-

tutes of the Fraunhofer-Gesellschaft. With its entire focus on wind energy the IWES
offers turbine manufacturers, suppliers, wind farm operators and power authorities a
large variety of research services and target-oriented collaboration covering complete
technical aspects of wind energy utilization [4, Startpage]. At the location in Bre-
merhaven, Germany, one main focus is the qualification of composite materials and
components of rotor blades as central components of wind energy turbine systems.
That competency may be subdivided into three disciplines: full-scale blade testing,
rotor blade manufacturing and material and component testing. The full-scale blade

3



1 INTRODUCTION

tests are performed in huge test facilities that allow the testing of blades with a length
of up to 100m. Both static and cyclic testing is possible, moreover, virtual testing [4,
Full scale blade testing].
As rotor blades of wind energy turbines consist of modern lightweight structures,

Fraunhofer IWES has a broad expertise in manufacturing, testing and characterizing
fiber-composites. It is capable of manufacturing material samples in accordance with
customer specifications and offering standard tests. In addition, rotor blade compo-
nents are tested. The aim is, to characterize new structural components, which are
highly critical and structurally relevant, such as bonded joints, ply drops, spar caps
and blade trailing edges. Fatigue tests also provide the possibility to determine the
properties of adhesives for example [4, Material and component testing].

1.3 Composite Sandwich Structures in Wind
Turbine Blades

From the structural side the rotor blade of a wind turbine consists of several structure
parts which together form the blade’s profile.

LE TE

PS

SS
Girder

Spar cap

Panel

Web
Figure 1.1: Blade profile [6, mod.]

As shown in Fig. 1.1, a cross-sectional view depicts all structural elements, the blade
consists of. The aerodynamic shell can be divided into the upper suction side (SS),
where lift is acting as negative pressure, i.e. a suction force and the lower pressure
side (PS), where a positive pressure force is contributing to the lift. Further, the
frontal nose edge is referred to as leading edge (LE), whereas the converging edge is
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1 INTRODUCTION

the so-called trailing edge (TE). The main carrying structural parts are the girders
both on leading edge and trailing edge and the spar caps. These parts represent the
primary structures. Moreover, the secondary structures are represented by two webs
and the panels, which form the closed shell [6].
Regarding the carried loads, the primary structures of the rotor blade are supposed

to withstand the occurring bending moments. In operation there might occur two
different bending motions, the flap-wise bending and the edge-wise bending. Flap-
wise bending describes a motion that is mainly driven by the acting lift on the rotor
blade, i.e. the blade is bent around its transverse axis. This acting moment is carried
mainly by the spar caps. A bending around the axis, which is perpendicular to the
longitudinal-transverse plane of the blade, is called edge-wise bending. Edge-wise
bending moments are carried by the girders both at LE and TE [6].
When it comes to the secondary structures, the purpose is different. The webs and

panels are designed to offer sufficient large stiffness against shear loads and to pro-
vide torsional stiffness. These requirements are equivalent to a high resistance against
buckling. Especially thin-walled cylindrical and airfoil-shaped structures are prone to
buckling. Therefore those structures and especially the secondary structures of a rotor
blade are usually designed as a sandwich [3, 7].

Core

Face sheet

Figure 1.2: Sandwich structure

Sandwich structures as depicted in Fig. 1.2 are thin-walled lightweight structures con-
sisting of a core material and covered by thinner face sheets. The face sheets are
composite structures made of fiber-reinforced polymer (FRP). In case of the panels
and webs in rotor blades it is common to use glass-fiber reinforced polymer (GFRP).
In GFRP glass-fibers are embedded in a surrounding matrix made of hardened epoxy
resin. The face sheets are mainly the carriers of tensile and compressive forces. The
sandwich core, however, has several other functions. Its material varies primarily
from different kinds of rigid polymer foams, such as polyvinyl chloride (PVC) foam
or polyethylene terephthalate (PET) foam, to balsa wood. With a density of roughly
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10% of the face sheet resin’s density the core material is much lighter per volume than
the face sheets. Such a small density is required with regard to the larger thickness
in comparison to the thin face sheets. In order to increase the bending stiffness, one
main function of the core is to define a certain distance between the face sheets. That
distance defines the height of the sandwich structure’s cross-section and thus its area
moment of inertia. The core is also meant to absorb the occurring shear loads [3, 7].
The sandwich panels have to be formed in a way to follow the curved aerodynamic

shell of the rotor blade. In order to allow the core plate’s adjustment in the curved
geometric form, the core plate is contoured. That means that the core plate is cut in a
regular defined pattern. Balsa wood core plates are usually cut into small rectangular
blocks, which are held together by a glass-fiber fabric, that is glued to one surface of
the balsa wood plate.

1.4 Vacuum Assisted Resin Transfer Moulding
(VARTM)

The vacuum assisted resin transfer moulding (VARTM) is a manufacturing method
for composite components. Both simple composite plates and sandwich plates are
manufactured applying this method. But also way more complex structural parts or
components like beam profiles can be built with VARTM. The VARTM is one vari-
ant of the so-called liquid composite moulding (LCM). Figure 1.3 shows the infusion
process in principle.

To

Air flowResin flow
Vacuum film

Preform

vacuum
pump

Figure 1.3: VARTM infusion process
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In a first step the dry fiber layers are cut into suitable dimensions and stacked in
desired order. The stacking of the layers is done on a heatable surface, e.g. a flat table
or a curved mould. When manufacturing a sandwich, the core is placed between the
fiber layers. This dry stacked structure is called the preform. Now the resin infusion
has to be prepared. In order to ensure a smooth and even resin penetration throughout
the whole component, further special layers have to be applied to the preform. The
preform is then covered by a transparent vacuum film, which is fixed air-tight. With a
vacuum pump the air is sucked out and the film is pressed tight onto the preform. Then
the resin is mixed with a hardener, freed from gas and lead into the preform-vacuum
build-up. After the preform has been completely infused by resin, the component has
to be cured over time at predefined temperatures to become a solid. The component
can then be demoulded and trimmed to its final measures [8].
In the wind turbine industry this process is well adapted. Especially when it comes

to sandwich components, LCM is advantageous due to its possibility to manufacture
the whole sandwich in a single infusion. This process goes along with the resin uptake
of balsa wood as core material in sandwich components [3, 7].

1.5 State of the Art/Related Work

The panels of today’s wind turbine blades are usually designed as sandwich in order to
achieve a sufficient stiffness against buckling [7]. While the sandwich’s face sheets are
made of FRP, different core materials are available. Commonly used core materials
are balsa wood or rigid foams, such as PVC or PET foam. The sandwich’s core kits are
manufactured with slits (contoured) to allow their adjustment in the curved geometric
form. Both the horizontal and vertical slits of the contoured core and the truncated
cells of the balsa wood at the core’s surface are penetrated by a non-neglectable amount
of resin that contributes to mass and stiffness [7].
Within the design phase of rotor blades it is essential to be able to have accurate

means for the estimation of mass and stiffnesses. Those means are usually analytical
or FE models. In particular the modelling of the core of sandwich structures poses
a challenge since the resin uptake has to be considered realistically. Models, which
neglect the resin uptake do not offer a proper estimation of mass and especially when
it comes to a buckling analysis, the negligence of the resin that penetrates the core
can be critical [7]. Existing models of balsa wood as pure material without resin are
able to predict mechanical properties in an accurate way taking the dependency on
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density into account. For instance mechanical investigations have been done by Vural
and Ravichandran [9] and Da Silva and Kyriakides [10]. Equations for stiffnesses and
mechanical properties for wood in general are stated by Gibson and Ashby [11] on a
cellular level. These equations are further used by Easterling et al. [12] to perform
a relation of balsa wood microscopy (cell geometry) to mechanical strength. The
microscopic structure of balsa wood is given in detail by Borrega et al. [13] using a
scanning electron microscope (SEM) and evaluating the micrographs. A modelling
approach of dry balsa wood (without resin uptake) has been done by Shishkina et al.
[14] including different cell types.
The impact of resin uptake of a contoured rigid PVC core has been investigated by

Rosemeier et al. [7]. The model considered implemented resin slits only in longitudinal
direction of the core plate and was meant to gain infused-core properties in order to
make them comparable to dry-core properties. The properties of the infused core have
been gained by applying the so-called smearing method as it has already been done
by Nickel [3] who developed an analytical model implementing the resin uptake of a
quasi-isotropic rigid foam core for GFRP sandwich composites.
Nickel’s model shows accurate results for core material having cells of spherical

shape and of one type. Balsa wood in contrast consists of more than only one cell
type. Its cells differ in size, shape and orientation and are strongly dependent on
material density [13]. None of the balsa wood cell types physically has a spherical
shape. Due to major dissimilarities in the microscopic structure between balsa wood
and rigid foam (e.g. PVC foam), the amount of resin that penetrates the truncated
cells and thus the resulting mass and stiffness is different. Additionally, balsa wood
is an orthotropic material and thus its mechanical properties significantly depend on
direction [12]. These facts lead to the need of a physically based FRP sandwich model
implementing the resin uptake of balsa wood as core material. The model from Nickel
shall serve as basis for the new model of the infused balsa wood core.

1.6 Scope and Research Goals

The master’s thesis deals with the resin uptake of balsa wood as core material for
sandwich plates with FRP facings. Because of the liquid composite moulding man-
ufacturing, the uptake effect may have a significant influence on mass as well as on
shear and bending stiffness and thus on buckling resistance of a component. The large
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1 INTRODUCTION

panel areas of the aerodynamic sandwich skins of the wind turbine’s rotor blade are
expected to be affected the most.
The aim of the thesis is the adaptation of an existing analytical model for the rigid

foam core (e.g. PVC) that will accordingly be modified and implemented in order to
simulate properly the resin uptake of a balsa wood core.
Both truncated balsa wood cells and the slits of the contoured core plate are filled

with a significant amount of resin before hardening. A physically based model is
developed, build on the Balsa wood micro-structure, proper for mass uptake estimation
and prediction of the mechanical properties of sandwich configurations that result after
the manufacturing and the curing process. The physical and mechanical properties of
the sandwich panel’s constitutive materials i.e. the balsa and the polymer resin will
be smeared through analytical formulations. In addition, a pure geometrical approach
is implemented to estimate the mass uptake. In order to calculate the stiffnesses of
sandwich and infused core, the classical laminate theory (CLT) is used. For the essence
of the model validation, sandwich specimens will be manufactured. These will be
tested mechanically via a four point bending configuration according to international
standards. The work of this thesis shall focus on plane plates without curvature. The
derived analytical model is set up on a Microsoft Excel spread sheet including various
options for the setting of necessary parameters and all calculations.
The scope of this thesis comprises in detail:

• literature research on the micromechanical structure of balsa wood and on "smear-
ing" of mechanical properties of a multi-phase medium

• description of the adapted analytical model regarding the calculation of mass/-
density and stiffnesses of resin and core material

• tests in order to investigate material behaviour of balsa wood
• manufacturing of resin-infused core plates to validate mass estimation
• detailed four point bending tests with own manufactured sandwich specimens in

accordance with engineering standards
• comparison of the analytic model and the experimental results

9



2 Theoretical Work

The essence of this chapter is the presentation and description of the newly derived
analytical model of a plane sandwich plate with a resin-infused balsa wood core. The
following sections are meant for deriving the geometries and mathematical approaches,
that lie behind the calculations implemented in the model. When describing the resin-
infused core model it is distinguished between mass calculation including its different
approaches and stiffness calculation. However, the stiffness calculation of the overall
sandwich component is done using the equations stated in the CLT. Therefore the
CLT is explained in detail in an own section. Finally, the theory behind the four
point bending test and a comment on the choice of the underlying engineer standard
is presented.

2.1 Microscopic Structure of Balsa Wood

Wood in general is made of different types of cells with large variations in size and
shape depending on its natural growth and the biological function of each cell type.
Balsa wood (Ochroma pyramidale) is classified as hardwood and grows in tropical
regions ranging from southern Mexico to Bolivia. The fact that balsa is a naturally
growing tree, makes it impossible to define constant material properties without a
relation to the density. The density varies within a broad range from about 40 kg

m3 up
to 380 kg

m3 . Physically the difference in density goes along with a difference in the size
of the different cell types [13].
To gain a sound knowledge on how the cells are oriented within a fabricated balsa

wood plate, it is necessary to know, how the fabrication is done. When fabricating
balsa wood plates as core material, the lumbered tree trunks are cut into long cuboids.
The main sap channels, later in this section referred to as vessel cells, are orientated
in longitudinal direction, since they lie vertically inside the trunk of the non-lumbered
tree. After sorting according to density ranges, the sorted wooden cuboids are glued
together. A plate of balsa wood is then gained from cutting slices [15, slides 23-30].
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That means that the final delivered core plate is actually a composite made of several
different trees roughly sharing the same density range. For this work, the balsa wood
plates have been purchased from the company Gaugler&Lutz oHG. Here, for the
reason of categorization, a specific denomination is attributed to each plate labeled
with the apparent nominal density and the minimum sheet density. That will be
important later, when the features of the model are introduced.
In order to see, how balsa wood is structured in detail, it is essential to have a look

at microscopic pictures. Within the scope of this thesis, balsa wood pieces have been
investigated at IWES using an optical microscope. However, the spectated samples
did not show adequate details on the balsa’s surface. This can be explained by the fact
that the surface of the balsa wood was not prepared in particular, so it was assumed
that the surface was way too rough. Nevertheless, detailed surface structures could
be seen to a very small extend. In addition to these attempts of picturing the cells of
balsa wood, some samples of balsa wood have been sent to both the Fraunhofer IWES
in Hannover and the Technical University of Denmark (DTU). Both institutes have
the possibility of taking x-ray scans to generate microscopic pictures.
With regards to a faster progress in specifying the model, the decision was made

to focus on published literature to define the balsa wood’s micro structure. Later
comparison to the received x-ray scans showed a good accordance to the measured
values from Borrega et al. [13]. So for modelling the balsa wood’s cell structure, the
literature from Borrega et al. is used. The main reason for choosing that literature is
that it delivers detailed and high-resolution pictures of balsa wood taken by a SEM.
Additionally, the cell geometries have been measured accurately multiple times and
throughout a wide range of densities. Besides, the literature from Easterling et al. [12]
also shows simplified cell geometries of medium dense balsa samples, giving values for
lengths, widths and cell wall thicknesses. In the paper from Shishkina et al. similar
cell geometries are illustrated.
When having a look at the trunk’s cross-section, a three-dimensional coordinate

system can be defined, marking the radial direction, the tangential direction and the
vertical axial direction. For the balsa plate’s coordinate system though, this definition
is not applicable, because the plate is made up of many different cuboids, which are
turned arbitrarily about their axial direction. Hence, the xyz-coordinate system is
further used to describe directions and planes of the balsa plate (see Fig. 2.1).
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Axial (a)

Tangential (t)

Radial (r)
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Balsa trunk Balsa plate

Figure 2.1: Coordinate systems of balsa trunk and balsa plate [10, mod.]

Basically, balsa wood consists of three different cell types: vessels, rays and fibers.
Those cells can be distinguished easily, as shown on the SEM picture (Fig. 2.2).

Figure 2.2: SEM micrograph of balsa wood [13]

The perspective in Fig. 2.2 is in that way, that the view is pointing at the top (or
bottom) surface side of a balsa wood plate. The vessels’ direction is equal to the
direction of plate thickness, further called the z-direction.
The vessel cells (Fig. 2.3) are the largest ones and have an elliptical shape, elongated

in radial trunk direction and defined by the diameters D and d, where D is the larger
one and d is perpendicular to D. As the only balsa cell type, the vessel cell can be
seen as one continuous cell that reaches from end to end in z-direction. In fact, it
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is composed of short elements, which have the defined length L. Some vessels are
grouped together and their adjacent cell walls are flattened. The cell wall has been
measured between the cell lumens, so the measured cell wall t is actually the double
cell wall between two neighbouring cells. Vessels however have a thicker double cell
wall T when adjacent to other vessel cells. In some literature the vessels are also
referred to as sap channels due to their purpose of directing the cell sap through the
trunk.

Figure 2.3: SEM micrograph of a vessel cell: (a) view on xy-plane (b) view on lateral
plane [13]

The second type of cells are the ray cells as seen in Fig. 2.4. This cell type is arranged
in thin lines, which grow in radial direction of the trunk. When viewed from above
they have a rectangle geometry with the long edge a and the short edge b. A cross-
sectional view on the lateral xz-plane or respectively the yz-plane however, reveals a
more oval shape. The cell height is denoted as L.

Figure 2.5 shows the third cell type of balsa wood, the so-called fibers. With roughly
65-75% these cells share the highest volume fraction of all balsa cell types. Fiber
cells are long cells, elongated in z-direction and pointed at the ends. Looking at the
xy-plane those cells show an irregular hexagonal shape. In order to give them a reg-
ular shape, which is suitable for modelling, the fiber cells are assumed to be regular
hexagons with the cell edge having the length h. The total vertical length of the fibers
is denoted as L. The wast majority of the fiber cells are practically assumed to be
straight vertical. However, there are some fibers, which are misaligned by the angle
θ. In Fig. 2.5 (b) it can be seen that some sporadic fibers are occasionally divided by
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Figure 2.4: Ray cells: (a) view on xy-plane (b) view on lateral plane [13]

transverse cell walls. These walls are in particular described by Easterling et al. [12],
although they are not mentioned at all by Borrega et al. [13]. The white arrows in
Fig. 2.5 (b) indicate a fourth cell type, the so-called parenchyma cells. Beside the other
three basic cell types, the parenchyma cells are difficult to identify when looking at
the xy-plane. Therefore, this cell type is neglected for modelling.

Figure 2.5: SEM micrograph and model of fiber cells: (a) view on xy-plane (b) view
on lateral plane [13]

The paper from Borrega et al. summarizes the measurements of the balsa cell ge-
ometries in a table (Table 2.1). In doing so, the measurements are sorted by density,
subdividing the broad density range into three density classes. Balsa wood with a
density of less than 100 kg

m3 is denoted as low-density balsa (LD) and medium-density
balsa (MD) shows a density between 100 kg

m3 and 200 kg
m3 , whereas samples with a den-

sity higher than 200 kg
m3 are categorized as high-density balsa (HD). The table below
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shows mean values for the air-dry density (moisture content of balsa wood between
5% and 7%) of all three density classes.

Table 2.1: Dimensions, volume fraction and solid fraction of main cell types in balsa
wood of different densities [13]

LD balsa MD balsa HD balsa
Air-dry density [ kg

m3 ] 64 163 274
Vessels
D [µm] 220.4± 31.0 (14) 320.8± 31.1 (23) 258.8± 38.6 (39)
d [µm] 156.6± 21.5 (14) 251.0± 18.5 (23) 206.6± 24.0 (39)
L [µm] n.d. 382.1± 121.1 (19) n.d.
t [µm] n.d. 4.0± 1.1 (99) n.d.
T [µm] n.d. 9.5± 1.5 (70) n.d.
Volume fraction [%] 2.8± 0.5 (4) 6.6± 1.1 (4) 8.8± 2.1 (8)
Solid fraction [%] 6.8 4.5 5.5
Rays
a [µm] 49.6± 8.4 (23) 35.8± 6.1 (34) 32.5± 3.5 (34)
b [µm] 19.4± 3.3 (23) 18.2± 3.1 (34) 15.8± 1.7 (34)
L [µm] n.d. 30.7± 6.0 (60) n.d.
t [µm] n.d. 0.9± 0.3 (97) n.d.
Volume fraction [%] 20.9± 2.1 (4) 19.9± 0.8 (3) 24.8± 1.9 (7)
Solid fraction [%] 6.5 7.4 8.3
Fibers
h [µm] 21.8± 4.5 (57) 18.0± 4.8 (105) 9.8± 3.0 (270)
t [µm] 0.8± 0.2 (50) 1.8± 0.5 (125) 2.2± 0.8 (250)
L [µm] n.d. 755.3± 122.2 (38) n.d.
θ [°] n.d. 6.1± 2.0 (30) n.d.
Volume fraction [%] 76.3 73.5 66.4
Solid fraction [%] 4.3 10.8 21.5

All the given values in Table 2.1 are mean values ± standard deviation. The numbers
in parentheses indicate the number of measurements of the particular measures. The
values marked with n.d. have not been determined.
Having a closer look at the measured values, there are some interesting data to be

highlighted. The vessel diameters D and d do not increase linearly with the wood
density. Instead the diameters are the highest in MD balsa and further decrease with
increasing density. Own measurements using the x-ray scans of MD balsa deliver values
of D = 293.6 µm and d = 222.2 µm and the measured values are in agreement with
values given in the papers of Vural and Ravichandran [9] and Da Silva and Kyriakides
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[10]. The volume fractions of vessels and rays have been determined by measuring the
area fraction, which equals the volume fraction assuming a constant depth in direction
of view. The volume fraction is meant in relation to the total wood volume. The fibers’
volume fraction is simply calculated to complete 100%. The solid fractions have been
gained from mean lumen dimensions and cell wall thicknesses and is here meant in
relation to each cell type. With increasing density, the fiber cells decrease in their edge
length h while their cell wall thickness increases. That is intuitive, because the cells
themselves densify. This behaviour does not apply to the vessels. The showed increase
of the vessels’ volume fraction with increasing density is counterintuitive because of
the fact that vessels are relatively large empty voids. Increased fluid transportation
requirements could be an explanation.

2.2 Modelling of Balsa Wood Cell Geometries

The analytical model shall be physically based. That means that the geometry of
each cell type has to be defined physically accurate according to their microscopic
structure. Hence, for the model each cell type (vessel, fiber, ray) is represented by
a certain shape that is ascribed to it. By assigning geometry parameters to every
cell type, it is possible to illustrate the specific cell in three dimensions. The defined
geometry includes the cell wall and its thickness as well as the lumen of the cell.
The model is only able to use one geometry setting per cell type. Due to large

varieties in cell growth and thus in its size, cell wall thickness and shape, the decision
has been made to set the parameters as average values in order to represent an average
cell of the specific type. For the model then all cells of the specific type do have this
average size. The cells’ shape however is always regular, neglecting irregular cell shapes
as they physically appear to a large extend. The cell model therefore always can only
be an approximation of the real cell.
When mentioning the dependence on growth of each cell, the density of balsa wood

is significant. Since a higher density goes along with a change of the parameters that
describe the cell geometry, implementing this dependency is necessary. When choosing
an arbitrary average density (within the vast density range of balsa wood) for the balsa
wood plate, the model is then able to change the affected geometry parameters of each
cell type accordingly. These dependencies, which the model uses, are values gained
from literature, in the strict sense from Table 2.1 by Borrega et al. [13].
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Parameters, which have been measured on balsa wood samples covering all three
defined density classes, are interpolated linearly between the given average densities.
When having a look at some parameters like the fiber edge length h for example, it
is clearly apparent that the gradient of the interpolated density differs quite much
when interpolating between LD balsa and MD balsa compared to densities between
MD balsa and HD balsa. Additionally, the vessel parameters D and d both show a
maximum value at an average air-dry density of 163 kg

m3 . Those parameters, which
have not been determined for LD balsa and HD balsa (marked with n.d.), are equal
to the given average value for MD balsa. All given cell wall thicknesses t are double
cell wall thicknesses between two cell lumens. When defining the geometry of a cell, it
is appropriate to use one single wall thickness. Therefore, the model offers the option
to consider either the single wall thickness t

2 or the double wall thickness t. Here,
the default option is "single wall". This option is considered to be physically accurate
when describing the geometry of adjacent cells correctly.
At first the geometry of the vessel cell model shall be described. This cell has the

simple geometry of an elliptical cylinder as illustrated in Fig. 2.6.

tC

tv

dv

Dv

(a) (b)A

Figure 2.6: Vessel cell model: (a) 3D view (b) cross-sectional view A

The size of the regular elliptical area is defined by its major axis Dv and its minor
axis dv. Those measured lengths are assumed to cover the total lengths of the vessel
cell including the cell wall tv. As previously mentioned, SEM micrographs also show
adjacent vessel cells separated by thicker cell walls T . However, this structural condi-
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tion is not modelled. The vessel reaches all the way through the entire thickness tC of
the balsa wood core plate.
The elliptical model is physically accurate and primarily usable for the calculation of

the empty cell volume that is supposed to be filled with resin during the resin infusion
process. Hence, its exact geometry is primarily used when applying the geometrical
approach of resin uptake (see Subsect. 2.3.1). The elliptical shape will be simplified
into squared resin pillars when deriving the stiffnesses in Subsect. 2.4.2.
The modelled cell geometry of the ray cells is slightly more complex. The SEM

micrographs identify different shapes from different perspectives. Therefore a three
dimensional geometry has to be set up according to the shown pictures. Figure 2.7
shows the resulting ray cell geometry.

(a)

AA

A A

B

(b) (c)

tr
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bt,r
bt,r
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αr
tr

Lr

2

b1,r

B1,r

B2,r

b2,r

Figure 2.7: Ray cell model: (a) 3D view (b) cross-sectional view A (c) detail view B

The cell’s cross-section from the lateral point of view is characterized by two trapezoids,
which result by mirroring one trapezoid at its longer parallel edge. The decision to
model the oval shaped cross-section in terms of trapezoids was made to allow the
simple geometrical calculation of the cross-sectional area, when applying arbitrary cell
cuts in order to consider the penetration depth of resin. The cell is elongated by the
length ar. The total cell height is denoted as Lr. The cell width including the cell
wall thickness tr is defined by the largest width B1,r at cell height Lr

2 and the smallest
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width b1,r. In order to determine the inner cell widths B2,r and b2,r the cell wall width
bt,r is gained with the help of the angle θr where the two trapezoids come together.
In addition, there is the angle αr = 180◦ − θr

2 needed. The mentioned geometrical
parameters are calculated as follows:

θr
2 = arctan

 Lr

2
B1,r−b1,r

2

 (2.1)

bt,r = tr
sin θr

2
(2.2)

B2,r = B1,r − 2 bt,r (2.3)

b2,r = b1,r − 2 tr
tan αr

2
(2.4)

Now, the model for the last remaining balsa cell type, the fiber cell, is presented. The
fiber cell is modelled as a straight pillar with a regular hexagonal cross-section and
the ends pointed with the shape of a pyramid with hexagonal basis.

hend,f

lf

hend,f

Lf

60◦
tf

a1,f

a2,f

tf

θf

tred,f

ht,f

(a) (b) (c)

A A

B

Figure 2.8: Fiber cell model: (a) lateral cross-section (b) cross-sectional view A (c)
detail view B

The model geometry of a fiber cell can be seen in Fig. 2.8. The total cell length Lf is
subdivided into one middle cell length lf and two times the cell end height hend,f . The
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cell wall thickness tf is the thickness as measured in the plate’s xy-plane. Therefore,
another vertical cell wall length is needed to describe the vertical cell wall thickness at
the end points of the pyramidal ends. This quantity is denoted as ht,f and it depends on
the angle θf and further on a reduced cell wall thickness tred,f . In reality this reduced
wall thickness is assumed to be equal to the actual wall thickness tf . However, the cell
geometry had to be slightly modified to allow the volume calculation of the straight
middle part separately from the converging cell ends. The hexagonal cross-section is
well defined by the outer edge length a1,f . But for the calculation of the empty volume
inside the fiber cell it is necessary to define the inner edge length a2,f in addition. All
named quantities are determined by the following geometrical relations:

lf = Lf − 2hend,f (2.5)

a2,f = a1,f − 2 tf
tan 60◦ (2.6)

θf
2 = arctan

 √3
2 a1,f

hend,f

 (2.7)

tred,f = sin
arctan

 hend,f√
3

2 a1,f

 tf (2.8)

ht,f = tred,f

sin θf

2

(2.9)

In the previous section it was stated that some fiber cells are occasionally subdivided
by horizontal cell walls at arbitrary positions along their length. The model does
not include these walls since they seem to be sporadic. Additionally, assuming the
geometry to be the average would mean that the intermediate wall occurs exactly in
the middle of the fiber cell. Approaches on the penetration depth also act on the
assumption of either half-filled cells or arbitrarily truncated cells. Both approaches
therefore averagely consider the horizontal cell walls.
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2.3 Resin Uptake Modelling Approaches

The resin uptake of the balsa wood core is the essential feature to be implemented
in the sandwich model. Hence, it is important to find physically accurate ways of
determining the amount of resin in the balsa wood core. There are different approaches
considerable and this section shall present those which have been investigated within
this thesis. The first approach is purely geometrical basing on the modelled cell
geometries. The determination of the average penetration depth actually is not an
overall resin uptake approach on its own. It is rather a quantity that is needed for
applying the smearing method. But there are different ways of calculating it. The
smearing method itself is an appropriate way to deal with the properties of a multi-
phase medium. It is an essential method for the resin-filled core model.

2.3.1 Geometrical Approach

With the definition of the cell geometries it seems likely to make use of those ge-
ometries in order to determine the total amount of resin inside the former empty cell
volumes and the slits between the balsa blocks. The main idea is to calculate the total
resin mass by adding together the resin-filled volumes (slits and cell volumes) of every
balsa block. It is assumed that the vessel cells are completely filled with resin. Fibers
and rays however are assumed to be filled averagely up to the half of their empty
cell volumes both in z-direction and laterally. Figure 2.9 illustrates the resin-filled cell
types for the geometrical approach.

(a) (b) (c)

VR,v VR,r VR,f

Figure 2.9: Resin-filled cell types for the geometrical approach: (a) vessel cell (b)
ray cell (c) fiber cell
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In a first step the resin volume of each cell type is determined with regard to the
defined cell geometry. This is done by setting up the equations for the half inner
empty cell volumes:

VR,v = tPlate π
(
Dv

2 − tv
) (

dv
2 − tv

)
(2.10)

VR,r = (ar − 2 tr)
1
2 (b2,r +B2,r)

(
Lr
2 − tr

)
(2.11)

VR,f = 1
2 a

2
2,f
√

3 (hend,f − ht,f ) + 3
2 a

2
2,f
√

3 lf2 (2.12)

Here, it is important to mention that all cells shall maintain their complete cross-
sectional area when both vertically and laterally truncated. Furthermore, the half
resin-filled cell volume stays the same independent of vertical or lateral view because
the entire half cell is considered anyway. That is why only one equation for each cell
type is required here.
The cross-sectional area of each cell type ACell is now determined. The aim is to gain

the average number of each cell type along the surfaces of one balsa block. Together
with the cells’ area fractions fA,Cell gained from Table 2.1 (area fraction equals volume
fraction) and the respective balsa block surface areas ABlock, the average number
NCell/Block of cells, which are covering all four surfaces of one balsa block can be
obtained by applying the following scheme:

NCell/Block = fA,CellABlock
ACell

(2.13)

By then multiplying the cell number per block by the cells’ resin volumes as they
are shown in Eqs. (2.10 to 2.12) and finally multiplying again by the total number
of blocks which form the core plate NBlock, the total resin volume inside the cells is
calculated.

VR,Cell,tot = NBlock (NV essel/Block VR,v +Nr/Block VR,r +NFiber/Block VR,f ) (2.14)
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The remaining slit resin volume VR,Slit,tot is determined in a similar manner per balsa
block. This requires the volume calculation of a resin frame around one balsa block
measuring the half slit width sx

2 and respectively sy

2 on each of the four balsa block
sides. This resin frame volume is multiplied by the total block number NBlock.

VR,Slit,tot = VR,Frame/BlockNBlock (2.15)

By means of the universal density-volume relation, the total resin mass of the pure
geometrical approach mR,geom can be determined.

mR,geom = (VR,Cell,tot + VR,Slit,tot) ρR (2.16)

For the resulting plate mass mPlate,res,geom, the resin mass is added to the dry balsa
core mass.

mPlate,res,geom = mR,geom + ρC VPlate,res (2.17)

2.3.2 Approaches on Penetration Depth

When describing the resin uptake one important quantity is the penetration depth of
the resin, here denoted as tPD. The penetration depth is a measure of how deep the
resin reaches into the inside of the balsa wood core. This obviously depends on the
cells that form the surface of the core. Due to the different shapes of the balsa cells
it is necessary to indicate one penetration depth for the z-direction and one for the
lateral direction. Further it is assumed that no resin is able to cross the cell wall.
As the analytical model bases on the work from Nickel [3], the determination of

the penetration depth has been done according to Nickel’s approach in a first step
to see if this approach is applicable for the balsa wood core. The rigid foam core
cells in Nickel’s model are defined as ideal spheres with a cell wall having constant
thickness. Across the surface of the foam core, these spherical cells are distributed
quasi-homogeneously. Thus, the surface cells are truncated at different cut heights hc.
It is assumed that the resin can only fill the truncated surface cells and that the cell
wall is not permeable to resin. So the inner cell volume is equal to the volume VR,c,
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which is dependent on hc. Further, the cutting area Ac is needed. It represents the
entire cross-sectional cell area at the cut height hc inclusive of the cell wall with its
thickness tsph. The average total radius of the spherical cell is Rc.
Now the idea of how to gain the penetration depth is to divide the cell’s resin vol-

ume VR,c by the area Ac. With regard to the units this makes sense. The actual
physical meaning of this approach however may not be clear at first glance, but it can
be visualized using the example of the spherical cell as shown in Fig. 2.10:

VR,c

hc
tPD,c,exp

Ac

hc,alt,1

hc,alt,2

VR,c,cyl

tsph

Rc

Figure 2.10: Nickel’s approach on penetration depth

Following the approach’s way to determine tPD,exp, the following exponential equation
is applied:

tPD,c,exp = VR,c
Ac

= f1(hc) (2.18)

After simply rearranging Eq. (2.18), the resin-filled volume of the truncated cell can
be seen as the volume of a cylinder VR,c,cyl having the base area Ac and the height
tPD,c,exp.

VR,c = VR,c,cyl = tPD,c,expAc = f2(hc) (2.19)

It should be noted that Eq. (2.18) and Eq. (2.19) are still functions depending on the
cut height hc. In Fig. 2.10 the actual considered cut height is denoted as hc while
other alternative cut heights are denoted as hc,alt,i. There are these cells, which are
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truncated close to the bottom and those, which are truncated just at the cell head.
So the inner cell volume VR,c can differ from relatively large to rather small. The area
Ac in contrast has a maximum at the half cell height and becomes smaller the more
hc increases its distance from the half cell height. This fact is essential with regard
to Eq. (2.18). It can be shown that cells with a large hc do have a large volume VR,c
but a small cutting area Ac tending towards zero, whereas low cut cells have both
parameters relatively small. Hence, the penetration depth tPD,c,exp does not increase
linearly but exponentially with increasing hc. In terms of the resin cylinder it would
mean that the cylinder becomes more and more thinner and longer being attended
by a larger penetration depth. The result is a higher weighting of shortly truncated
cells in comparison to those having less volume left. Assuming the existence of cells
showing all different possible cut heights with the same probability, the mean value
tPD,exp is gained by writing in integral notation as follows:

tPD,exp = 1
b− a

∫ b

a
f1(hc) dhc (2.20)

The limits of the integral a and b shall be set in a way that the interval of the integral
covers the entire inner volume of the cell. In Nickel’s spherical cell that is from a = tsph

to b = 2Rc − tsph.
For the presented spherical cell model this approach has been proofed of being

physically accurate due to the consideration of the higher resin volume in shortly
truncated cells. However, during research the question came up, why to chose such
an approach because when looking only at the actual penetration depth dimension
towards the inner of the core (that equals the dimension of hc), the inner volume of
each truncated cell does not seem to play a big role. The intuitive way instead is to
assume all cells being half-filled with resin. This condition is fulfilled when calculating
tPD,lin by the mean value of the simple linear function:

g(hc) = tPD,c,lin = hc − tsph (2.21)

When assuming each cell of being truncated at half inner cell height hCell,in

2 , tPD,lin
can be obtained in general as follows:

tPD,lin = hCell,in
2 (2.22)
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Both the exponential and the simple linear approach on penetration depth have been
investigated with regard to the applicability on balsa wood cells. The only cell types,
which are considered to affect the penetration depth are the ray cells and the fiber
cells. For applying Nickel’s approach the defined cell geometries are used to determine
the inner resin volume VR,c and the cutting area Ac of those cells depending on a cut
height hc. The penetration depth is then gained by using Eq. (2.20).
In detail this approach and especially the derivation of the function f1(hc and its

integration for each cell both vertically and laterally are quite complicated. Thus,
the focus will now be on the results and their plausibility. It could be shown that
the usage of the exponential approach does not deliver plausible values for the fiber
cells. Assuming a total fiber cell length of Lf = 650 µm and an average cell end
height hend,f = 70 µm leads to an average penetration depth of tPD,exp = 1315.5 µm.
The balsa’s nominal apparent density here is ρC = 148 kg

m3 . This example shows that
the overweighting of fiber cells with a lager resin volume is not plausible because
the penetration depth extends the total cell length more than twofold. The reason
is the pointed cell end, more precisely its converge ratio. The exponential approach
leads to expectable values of about tPD,exp = 450 µm when sizing down the cell end
height to 10 µm. But as seen on the SEM micrographs (Fig. 2.5) this is much too
short to come close to physical reality. Regarding the lateral penetration depth the
results from exponential and linear approach are somewhat equal. For the ray cells
both approaches show similar values due to the smaller inner cell volume of the rays
compared to the fibers.
In conclusion the decision was made to prefer the simple linear approach when

calculating the average penetration depth in all directions. The contributing amount
of each cell type (rays and fibers) is taken into account with regard to their area
fractions. The model further offers the option to switch between Nickel’s approach
and the simple linear approach.

2.3.3 Smearing Method

One way to unite the material properties of a multi-phase medium mathematically is
the so-called smearing method. The word "smearing" means the idea of gaining one
homogeneous continuum out of two or more continua by simply adding the different
properties after weighting them according to the medium’s volume fraction [3].
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Hence, applying this method requires the definition of a total volume that contains
the volumes of the different mediums. A total volume Vtot being set together by the
volumes Vi of the single mediums is assumed.

Vtot =
k∑
i=1

Vi (2.23)

The material property ξsm for the smeared continuum shall be determined. Accord-
ingly, the non-smeared properties of the single mediums are denoted as ξi. The smeared
property is then calculated as follows:

ξsm =
k∑
i=1

ni ξi (2.24)

The weighting factors ni are the single mediums’ volume fractions:

ni = Vi
Vtot

(2.25)

In the following section, the smearing method is applied both for the density/mass
calculation and the stiffness calculation of the resin-infused balsa wood core. With
respect to the applicability of the smearing method, the definition of a representative
volume element (RVE) is necessary. A RVE is the smallest element of a larger struc-
ture, that represents the larger structure as a whole. The structure to be investigated
in this case is the whole balsa wooden core plate, infused by resin. Of course, the di-
mensions of the core plate may be arbitrary, so the total volume has to be represented
by a RVE. Here, the contoured structure of the balsa plate is beneficial. The balsa
plate is subdivided into many single blocks, which are separated by longitudinal and
transversal slits. Those slits are filled with resin during the resin infusion process. A
RVE, that contains one balsa block and its surrounding resin, is suitable for applying
the smearing method.

Figure 2.11 illustrates how the RVE is gained. Here, the marked volume VCore is the
volume of the dry balsa core without any resin, whereas the surrounding volume VResin
is assumed to be the volume that is filled up with resin. The face sheets are not included
in the RVE. They shall not be part of the smearing as it is shown here. Instead their
properties are calculated with established methods like the CLT and depending on the
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Balsa core (arrow points at a balsa block)
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Figure 2.11: RVE of the resin-infused balsa plate

fiber volume fraction of each layer. Nevertheless there is a vertical part of VResin above
the dry core volume. This part represents the resin, which penetrates the truncated
cells along the balsa core’s surface in vertical direction. The resin, which penetrates
laterally, is included in the slits’ volumes.

2.4 Application of the Smearing Method

In the previous section the smearing method has been explained and the RVE is de-
termined in principle. This section deals with the application of the smearing method
regarding the calculation of mass and stiffnesses of the resin-infused balsa wood core as
it is performed in the sandwich model. Mass and stiffness determination are the both
main aims of the model. But for deriving both approaches, the RVE has to be spec-
ified differently. In the following two subsections those specified RVEs are presented.
Furthermore, the final model equations are derived in detail.
At this point it is important to mention that the equations, which are derived in

this section, are only valid for the balsa core, whose surface cells and slits are filled
with resin. The face sheets are not included as they are implemented separately using
established calculation methods.
In general, for specifying the dimensions of the RVE, the model bases on one essential

assumption. It is assumed that the RVE’s total dimensions equal those of a dry balsa
block within the contoured plate. The reason for that assumption is that practically,
when having a look at the dry plate before infusion, the slits do not have a certain
width because they are cut partially with a sharp knife and then broken off, instead
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of being sawed. Hence, in ideal circumstances, there is no loss of material. But
experiments show that the balsa blocks seem to shrink during the infusion and curing
process and here also the wood moisture is relevant as it will be shown in Chap. 4.
Additionally, the single blocks are held together by a glass-fiber fabric. So for the
RVE, the blocks do shrink while staying on their initial positions. The slits do widen
accordingly to the blocks’ shrinkage plus a so-called zero opening of 0.2mm. The zero
opening shall describe a mean slit opening resulting by a non-planar positioning (not
exactly planar) of the contoured balsa plate before infusion. Together with minimal
material losses during cutting and handling of the plate, a zero slit opening is not
avoidable in practice.
The chosen RVE in general is taken from Nickel [3, pp. 7-16] and further modified

in order to meet the physical structure of balsa wood. Hence, the derived smearing
model for the infused balsa wood core and all derivations for mass and stiffnesses do
follow the general ideas from Nickel. The modification is done by implementing the
different cell geometries in order to determine the penetration depth and in the first
place by considering the vessel cells as the largest balsa wood cell type when deriving
the equation for the smeared mass and the stiffness equations.

2.4.1 Calculation of Mass

Besides the already shown geometrical approach for the determination of the total
core mass, the smearing method delivers a different approach. The aim is to gain a
smeared density according to the underlying RVE. Additionally, the total resulting
volume VPlate,res of the balsa wood plate after infusion is needed. The calculation
of that volume is done by performing some corrections on the plate’s geometry with
regard to wood moisture, the exposure to vacuum, the curing process of the resin-
hardener mixture, some additional shrinkage that has been observed experimentally
and lastly the trimming of the plate as desired. These core plate geometry corrections
do all base on experimental results, which are stated in Chap. 4 and will not be further
explained within this subsection. After the total resulting geometry of the resin-filled
plate has been determined, the mass is calculated by multiplying the smeared density
by the resulting plate volume.
Essential for determining the smeared density is the definition of the used RVE.

Furthermore, some assumptions have to be made to justify the choice of the RVE.
Figure 2.12 shows the chosen RVE for the purpose of density smearing.
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Figure 2.12: RVE for the smearing of density

The depicted RVE consists of two different volumes, the dry core volume VC and the
resin volume VR. The volume element considers the resin uptake of all three basic cell
types along the surfaces of the balsa wood blocks. By implementing the penetration
depth tPD both vertically and laterally, the truncated fibers and rays are represented
in taking up the resin during infusion. Hence, the cell walls are neglected. In addition
the slits are represented by their widths sx and sy.
The volume VR,Vessel also belongs to the resin volume VR, but is named separately to

highlight its consideration. The vessel cells usually are distributed arbitrarily across
the balsa block surface. In order to simplify the issue, the vessels’ area fraction is used
and applied to the surface area of one balsa block. Thus all the vessels are treated as
one large vessel cell. So with regard to the total vessel volume, it is assumed to be no
difference. Using the volume fraction and accordingly the area fraction from Table 2.1,
the vessel volume and vessel area per block (per RVE) are gained. Thus, the volume
VR,Vessel equals:

VR,Vessel = VVessel/RVE − 2AVessel/RVE tPD,z (2.26)

With respect to the assumptions and definitions mentioned above, the two volumes
VC and VR are calculated as follows:
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VC = ((LRVE − sx − 2 tPD,x) (WRVE − sy − 2 tPD,y) (tRVE − 2 tPD,z))− VR,Vessel
(2.27)

VR = VRVE − VC = LRVEWRVE tRVE − VC (2.28)

After the two volumes are determined, the volume fractions nC and nR are obtained
via Eq. (2.25) with Vtot = VRVE. The smeared density ρtot is now gained by applying
the smearing equation.

ρsm =
k∑
i=1

ni ρi = nC ρC + nR ρR (2.29)

By applying the smearing method the pure balsa plate and the penetrated resin have
been investigated so far. However the model does not neglect the glass-fiber fabric,
which holds the single balsa blocks together. The ratio of fiber mass to resin mass is
assumed to be 50%. Further the fabric’s mass per unit area is known. The mass of
the infused glass-fiber fabric is obtained by using the following equation.

mGlassfiber,infused = 2
(
m

A

)
fabric

APlate,res (2.30)

Finally, as already mentioned the smeared mass of the resulting resin-infused core
plate is determined with the simple mass-density relation plus the mass of the infused
glass-fiber fabric:

mPlate,res = ρsm VPlate,res +mGlassfiber,infused (2.31)

2.4.2 Calculation of Stiffnesses

This subsection deals with the calculation of in-plane and out-of-plane stiffness moduli
of the resin-infused core. As mentioned before, this calculation is based on a differ-
ent RVE than the mass calculation. The reason is that summarizing all resin-filled
vessel cells (resin pillars) by one centered resin-filled cylindrical pillar would result in
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a mechanically inappropriate solution of the issue. Important here is that the resin
pillars are distributed equally across the dry core’s surface. The underlying RVE is
illustrated in Fig. 2.13.

sy s x

z

y

x

LRVE

WRVE

tRVE

VC

VR

VR,Vessel,mn

n

m

Figure 2.13: RVE for the smearing of stiffnesses

The RVE for the stiffnesses looks quite different in some aspects compared to the one in
Fig. 2.12. At first, the single cylindrical pillar is substituted for an arbitrary number
of quadratic shaped pillars, which represent the elliptical vessel cells. So here, the
elliptical shape is simplified by introducing quadratic pillars having the edge length a.
The pillars are arranged in a rectangular pattern. The model allows the customization
of that pattern by choosing arbitrarily the number of pillars in y-direction as m and
the number of pillars in x-direction as n. However, the decision on what values are set
as an input for the calculation should be reasonable. A reasonable choice can be made
after having calculated roughly the total number N of vessel cells per balsa block using
the area fraction and equal cell geometries of all vessels. Then m and n are chosen in
that way that the distance bx between the pillars in x-direction and the distance by
between the pillars in y-direction are the same or at least close to each other.
Another major difference in comparison to the RVE for density smearing is that

there is no penetration depth tPD. Hence, the resin that penetrates the truncated
balsa wood cells is neglected and not represented by the resin volume VR. The reason
is the same as already stated by Nickel for the rigid foam model [3]. Due to the fact,
that the balsa cell volumes are continuously separated by their cell walls, the resulting
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resin structures are assumed to be not capable of carrying any loads. Furthermore, the
vertical penetration depth is very small compared to tRV E, while the lateral penetration
depth is very small compared to sx or sy. So the resin volume VR does only represent
the slits and the vessel cells, fully filled with resin.
The RVE shall now be investigated in order to explain the derivation of the stiff-

nesses. Figure 2.14 gives a more detailed view for deriving the equation for the Young’s
modulus Ex in x-direction.

n

m
a

a

I IIIIIIV
a abx bx

2n
2n+ 1

Fx Fx

Composite Resinsx

sy

∆xR

∆xComp

∆xComp,I

∆xComp,II

WC,infused

WRVE

LRVE

LC,infused

x

y

Figure 2.14: RVE in xy-plane

For the purpose of the determination of Ex and Ey analogously, the xy-plane of the
RVE is depicted. The total vessel number N is gained by multiplying m by n.

N = mn (2.32)

The resin filled squared pillars shall have the dimension a x a. The edge length a is
gained by using the total area of the vessel cells per RVE and distribute it to the single
squared pillars.

a =
√

1
N
AVessel/RVE (2.33)
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The space between the pillars is denominated as bx and by respectively. Equal spaces
along the dry core’s surface leads to the following equations:

bx = LC,infused − n a
(n+ 1) (2.34)

by = WC,infused −ma

(m+ 1) (2.35)

The infused core lengths are determined by subtracting the relative slit width from
the total RVE dimension.

LC,infused = LRVE − sx (2.36)

WC,infused = WRVE − sy (2.37)

The applied Forces Fx lead to strains on both sides of the RVE. The seen RVE
plane is subdivided into a pure resin part, here represented by the slit width sx, and
a composite part consisting of dry core and resin slit. For the total deformation in
x-direction the deformation ∆xComp of the composite part and the deformation ∆xR

of the resin part are added.

∆xtot = ∆xR + ∆xComp (2.38)

Now it is assumed that the composite’s deformation results from adding together the
single deformations of the columns I, II, III, IV to column 2n + 1. Those columns
(or rows for the y-direction) alternately contain the resin pillars or they do not. By
presuming linear elastic material behaviour and the strain definition ε = ∆x

x
the resin

part’s deformation and the single columns’ deformations are obtained as follows:
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∆xR = εR,x sx (2.39)

∆xComp,I = εComp,I,x bx (2.40)

∆xComp,II = εComp,II,x a (2.41)

The deformations for the remaining columns III to 2n + 1 are gained in the same
way, each column alternating by its width bx or a. The entire formulation of Eq. (2.38)
with all deformations is:

∆xtot = ∆xR + ∆xComp,I + ∆xComp,II + · · ·+ ∆xComp,2n+1 (2.42)

By implementing the stress-strain relation σ = E ε (Hooke’s law for linear elastic
material behaviour), Eq. (2.42) can be rewritten.

σx
Ex

LRVE︸ ︷︷ ︸
∆xtot

= σx
ER

sx + σx
EComp,I,x

bx + σx
EComp,II,x

a+ · · ·+ σx
EComp,2n+1,x

bx︸ ︷︷ ︸
Ax

(2.43)

The right part of the equation shall further be named as Ax. Now, the smearing
method is applied to calculate the Young’s moduli of the composite part using the
single phase modulus of the resin ER and the dry core modulus EC,x. From Fig. 2.14
it is apparent that all columns denoted with an odd index number share the same
cross-section without resin pillars, whereas all even numbered columns do share the
same cross-section including the resin pillars. When determining the volume fraction
of columns in the composite part, it is sufficient to just take the cross-sectional length
fraction into account because thickness and column width are the same. Hence, there
are two different Young’s moduli to be determined via smearing: one for the odd
numbered columns with the width bx and one for the even numbered columns with
the width a.
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EComp,Odd,x = sy
WRVE

ER +
(

1− sy
WRVE

)
EC,x (2.44)

EComp,Even,x = sy +ma

WRVE

ER +
(

1− sy +ma

WRVE

)
EC,x (2.45)

Due to the fact that all cross-sections share the same load Fx as well as the same
cross-sectional area, the tensile stress σx is the same in each deformation summand.
Therefore it can be reduced. The term Ax is now further summarized to Ax,red:

Ax,red = 1
ER

sx + (n+ 1) 1
EComp,Odd,x

bx + n
1

EComp,Even,x
a (2.46)

Finally, the modulus Ex is gained with respect to Eq. (2.43).

Ex = LRVE
Ax,red

(2.47)

In order to determine the modulus Ey the derivation is done analogously. The analogue
derivation leads to the following equation:

σy
Ey

WRVE︸ ︷︷ ︸
∆ ytot

= σy
ER

sy + σy
EComp,I,y

by + σy
EComp,II,y

a+ · · ·+ σy
EComp,2m+1,y

by︸ ︷︷ ︸
Ay

(2.48)

The smeared moduli are gained respectively.

EComp,Odd,y = sx
LRVE

ER +
(

1− sx
LRVE

)
EC,y (2.49)

EComp,Even,y = sx + n a

LRVE
ER +

(
1− sx + n a

LRVE

)
EC,y (2.50)

It can be summarized:
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Ay,red = 1
ER

sy + (m+ 1) 1
EComp,Odd,y

by +m
1

EComp,Even,y
a (2.51)

And consequently Ey is obtained.

Ey = WRVE

Ay,red
(2.52)

The remaining stiffness in z-direction can be derived in a similar way. When having
a look at Fig. 2.14 again, it is imaginable to apply a Force in z-direction pointing
out of the depicted plane. The resulting deformation in z-direction affects the entire
cross-sectional area of the RVE. Hence, there is only one smeared Young’s modulus
Ez = EComp,z. The required volume fraction of the dry core is represented by its area
fraction, here denoted as Az.

Az = LC,infusedWC,infused − AVessel/RVE
LRVEWRVE

(2.53)

Implementing this formulation, Ez is determined as follows:

Ez = EComp,z = Az EC,z + (1− Az)ER (2.54)

After the Young’s moduli the derivation of the shear moduli shall be done with refer-
ence to another view on the RVE. A shear force leads to an out-of-plane deformation,
further denoted as the vertical displacement w. Figure 2.15 illustrates the deformed
situation.

In general the derivation is done in the equivalent way, as it is done for the Young’s
moduli. The definition for the total number of resin filled pillars N is the same as well
as for a, bx and by. Hence, these operands are calculated according to Eqs. (2.32 to
2.37).
The RVE is again subdivided into a resin part and a composite part. Equivalent to

Eq. (2.38), the total vertical displacement is gained by adding the vertical displacement
of both parts.
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Figure 2.15: Shear deformation of RVE in xz-plane

wsh,tot,xz = wsh,R,xz + wsh,Comp,xz (2.55)

Again, the composite’s deformation wsh,Comp,xz is simply consisting of the vertical
displacements of each column, which are added together. For the next step it is
assumed that the shear strain γ is very small, so that the lengths LRVE and LC,infused
are used as initially defined and there is no displacement in x-direction depending
on the vertical displacement (∂ u

∂ z
= 0). Therefore, the relation γ = ∂ w

∂ x
is used in

order to determine both the resin part displacement and the columns’ partial vertical
displacements.

wsh,R,xz = γR,xz sx (2.56)

wsh,Comp,I,xz = γComp,I,xz bx (2.57)

wsh,Comp,II,xz = γComp,II,xz a (2.58)
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The aim of this derivation is to obtain an equation for the shear modulus Gxz. Thus,
the single vertical displacements have to consist of an appropriate expression. The
shear strain γ can be substituted by the ratio of shear stress τ to the shear modulus
G (γ = τ

G
). By using this relation, Eq. (2.55) is consequently rewritten as:

τxz
Gxz

LRVE︸ ︷︷ ︸
wsh,tot,xz

= τxz
GR

sx + τxz
GComp,I,xz

bx + τxz
GComp,II,xz

a+ · · ·+ τxz
GComp,2n+1,xz

bx︸ ︷︷ ︸
Axz

(2.59)

The shear moduli, which represent the columns of the composite part of the RVE,
are summarized as already presented before into one smeared modulus for the odd
numbered columns and one smeared modulus for the even numbered columns.

GComp,Odd,xz = sy
WRVE

GR +
(

1− sy
WRVE

)
GC,xz (2.60)

GComp,Even,xz = sy +ma

WRVE

GR +
(

1− sy +ma

WRVE

)
GC,xz (2.61)

Since τxz is constant within all cross-sectional areas, Eq. (2.59) is devided by τxz in
order to define Axz,red as:

Axz,red = 1
GR

sx + (n+ 1) 1
GComp,Odd,xz

bx + n
1

GComp,Even,xz

a (2.62)

This leads to the final formulation for Gxz:

Gxz = LRVE
Axz,red

(2.63)

The derivation of Gyz is done completely in the analogue way as for Gxz. Hence, the
necessary equations are given below without further annotations.
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GComp,Odd,yz = sx
LRVE

GR +
(

1− sx
LRVE

)
GC,yz (2.64)

GComp,Even,yz = sx + n a

LRVE
GR +

(
1− sx + n a

LRVE

)
GC,yz (2.65)

Ayz,red = 1
GR

sy + (m+ 1) 1
GComp,Odd,yz

by +m
1

GComp,Even,yz

a (2.66)

Gyz = WRVE

Ayz,red
(2.67)

Now the out-of-plane shear stiffnesses have been derived. This subsection closes with
the derivation of the final equations for the smeared in-plane stiffnesses Gxy and Gyx.
Basically the approach is equal to the out-of-plane shear deformation. Instead of the
vertical displacement wsh there are the horizontal displacements ush and vsh. The shear
deformation causing the shear strain γxy equals the displacement vsh in y-direction,
whereas ush represents the displacement in x-direction causing the shear strain γyx.
Like done before, the derivation is firstly shown exemplarily for one of the two men-
tioned moduli, here Gxy. The RVE is deformed in the way shown in Fig. 2.16.

The operands N , a, bx and by do not change, even though the squared shape of the
resin-filled pillars is sheared, too. So the resin pillars’ edge length a is still gained by
using Eq. (2.33). It is presumed that the total displacement vsh,tot is set together of
the resin part’s displacement vsh,R plus the composite part’s displacement vsh,Comp.

vsh,tot = vsh,R + vsh,Comp (2.68)

Considering a very small shear strain γxy without partial strain nonparallel to the
y-axis (∂ u

∂ y
= 0), both vsh,R and the single column summands of column I to 2n + 1

can be rewritten into the familiar form:
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Figure 2.16: Shear deformation of RVE in xy-plane (here: y-displacement)

vsh,R = γR,xy sx (2.69)

vsh,Comp,I = γComp,I,xy bx (2.70)

vsh,Comp,II = γComp,II,xy a (2.71)

The shear modulus G is introduced by the relation γ = τ
G
, which is inserted into

Eq. (2.68).

τxy
Gxy

LRVE︸ ︷︷ ︸
vsh,tot

= τxy
GR

sx + τxy
GComp,I,xy

bx + τxy
GComp,II,xy

a+ · · ·+ τxy
GComp,2n+1,xy

bx︸ ︷︷ ︸
Axy

(2.72)

The even and odd numbered shear moduli are now summarized as already known:
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GComp,Odd,xy = sy
WRVE

GR +
(

1− sy
WRVE

)
GC,xy (2.73)

GComp,Even,xy = sy +ma

WRVE

GR +
(

1− sy +ma

WRVE

)
GC,xy (2.74)

With the reduced right side term of Eq. (2.72) the final equation for the shear modulus
Gxy is obtained.

Axy,red = 1
GR

sx + (n+ 1) 1
GComp,Odd,xy

bx + n
1

GComp,Even,xy

a (2.75)

Gxy = LRVE
Axy,red

(2.76)

The shear strain γyx is described by a shear displacement ush in x-direction. The
derivation of the shear modulus Gyx is equivalent to the derivation for Gxy. To avoid
further repetition, the elementary equations are stated but not commented.

GComp,Odd,yx = sx
LRVE

GR +
(

1− sx
LRVE

)
GC,yx (2.77)

GComp,Even,yx = sx + n a

LRVE
GR +

(
1− sx + n a

LRVE

)
GC,yx (2.78)

Ayx,red = 1
GR

sy + (m+ 1) 1
GComp,Odd,yx

by +m
1

GComp,Even,yx

a (2.79)

Gyx = WRVE

Ayx,red
(2.80)

Before this subsection comes to an end, one thing is important to mention. Due to
the fact that the blocks of the contoured balsa core are rectangular, the respective
dry core volume of the RVE has a rectangular shape, too. That means that the
shown derivations deliver results for the stiffness moduli, which explicitly depend on
the underlying coordinate directions, even if the pure balsa structure does not show
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up differences. For example, there is no actual difference in the balsa structure when
comparing x-direction and y-direction. That may seem somewhat counterintuitive,
but it is the most exact geometry implementation that takes the resin uptake into
account. In addition, the slit widths sx and sy are not necessarily the same due to
different direction dependent shrinkage of the single balsa blocks, caused by the loss of
moisture or resin hardening. In other words, the equivalent stiffnesses would be equal
in the case that m = n, LRVE = WRVE and sx = sy. These parameters can be chosen
arbitrarily within the model. However, the actual geometry of the balsa blocks shows
remarkable influence on the calculated stiffnesses.
The mechanical constants (Young’s moduli EC and shear moduli GC) of the pure

balsa core material, which are used in the smearing equations are calculated by equa-
tions given by Gibson and Ashby for wood in general [11, p. 418]. Since the balsa
plate is set together by many pieces of arbitrary rotational orientation, the tangential
and radial constant components in the xy-plane are unified in the analytical model
by implementing the respective mean value. The used equations include the so-called
relative density ρrel. It is defined as the ratio of the density of the core material ρC
and the density of the pure solid cell wall material ρs.

ρrel = ρC
ρs

(2.81)

The used solid cell wall density is defined as ρs = 1500 kg
m3 . This value is assumed to

be close to the cell wall material density of all types of wood [12].

2.5 Classical Laminate Theory (CLT)

This section deals with the derivation of the classical laminate theory (CLT) as de-
scribed by Schürmann [16, pp. 205-228, pp. 323-340]. The CLT offers a calculation
methodology, which allows the determination of the stiffnesses of a multi-layer com-
posite plate. That means that the flexural properties of a composite plate, which
consists of several unidirectional (UD) layers, can be investigated by adding the stiff-
nesses of each single UD layer. The main aim of the CLT is the set-up of an equation or
rather a system of equations that describe the elastic behaviour of the total composite
plate.
Before deriving this system of equations, some assumptions have to be stated, which

lie behind the theory [16]:
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• there are no acting mass forces (like weight or inertia forces)
• the plate shows rigid behaviour against shear loads and shear displacements, so

that the core of a sandwich plate does not show elastic behaviour, when being
exposed to shear loads (only consideration of bending moments resulting by a
shear load Q)

• plane stress is assumed (multi-layer composite is thin-walled)
• the material shows ideal linear elastic behaviour (Hooke’s law is applicable)
• the element thickness (plate thickness) is constant
• the multi-layer composite consists of several UD layers (UD layer as homogeneous

continuum)
• all single UD layers are connected perfectly to each other (no slipping between

the layers, no adhesive layers)

In a first step two operands are defined by dividing the acting force N and the acting
moment M by the width b. In vector notation[16]:

n̂ = N̂

b
=


n̂x

n̂y

n̂xy

 (2.82)

m̂ = M̂

b
=


m̂x

m̂y

m̂xy

 (2.83)

The symbol "ˆ" declares that the marked operands refer to the total multi-layer com-
posite plate. The plane stress condition is shown on an example multi-layer composite
element in Fig. 2.17:

Regarding the shown forces and moments, it is stated that n̂xy = n̂yx as well as
m̂xy = m̂yx. For the purpose of calculations, which will be shown later in this section,
a reference plane has to be defined. Usually it is defined as the composite’s mid-plane.
The layer numbering begins with k = 1 at the bottom layer and counts up to the top
layer k = n. In order to define the thickness of each single layer, the z-coordinates are
introduced in dependence on the reference plane.
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Figure 2.17: Plane stress on multi-layer composite and layer numbering

Due to the fact, that the indication of moments may differ depending on the under-
lying literature, it is important to define, how the indication is meant for this thesis.
A moment is indicated in the way, that the index marks the normal direction of the
plane, in which those stresses occur, which are caused by the moment. For example the
moment m̂x causes stresses in the composite’s plane with the normal in x-direction.
This would be the yz-plane.
In the CLT each layer is attributed with the so-called reduced UD layer stiffness

matrix Q. Assuming plane stress condition, Hooke’s law is applied for the single UD
layer as follows [16]:

σ = Qε


σ‖

σ⊥

τ⊥‖


︸ ︷︷ ︸

σ

=


E‖

1−ν⊥‖ ν‖⊥

ν‖⊥ E‖
1−ν⊥‖ ν‖⊥

0
ν⊥‖ E⊥

1−ν⊥‖ ν‖⊥

E⊥
1−ν⊥‖ ν‖⊥

0
0 0 G⊥‖


︸ ︷︷ ︸

Q


ε‖

ε⊥

γ⊥‖


︸ ︷︷ ︸

ε

(2.84)

Equation (2.84) is written in the local ‖⊥-coordinate system as the indication shows.
The index ‖ indicates the direction parallel to the longitudinal fiber direction, where
as the index ⊥ indicates the direction perpendicular to the longitudinal fiber direction.
The single layers of the multi-layer composite consist of fibers, which are unidirectional.
So each layer k is defined by its fiber angle α. Usually, for a multi-layer composite the
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stacking sequence of the single layers is not homogeneous. In fact, the different UD
layers do differ in terms of their fiber angle α to enable a certain strength in predefined
directions. Hence, the single UD layers have their own local ‖⊥-coordinate systems.
Therefore, the Q-matrix has to be transformed using transformation matrices, here
defined as T 1 and T 2. Equation (2.87) makes sure that all local coordinate systems
are turned into one global coordinate system. Those Q-elements are marked with an
overline [16].

T 1 =


cos2 α sin2 α − sin 2α
sin2 α cos2 α sin 2α

0.5 sin 2α −0.5 sin 2α cos 2α

 (2.85)

T 2 =


cos2 α sin2 α 0.5 sin 2α
sin2 α cos2 α −0.5 sin 2α
− sin 2α sin 2α cos 2α

 (2.86)

Q = T 1QT 2 (2.87)

Now, to begin with the derivation of the total multi-layer composite stiffness matrix
M , the forces nk and moments mk are added together to form the total operands [16].

n̂ =
n∑
k=1

nk (2.88)

m̂ =
n∑
k=1

mk (2.89)

Considering the kinematic relation for strain ε̂ = ε0 + z κ0 (index 0: depending on
reference plane) and after applying Hooke’s law and solving the occuring integrals like
Schürmann did [16], the following equations are gained [16]:
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n̂ =
n∑
k=1

(
Q
k

(zk − zk−1) ε0 +Q
k

1
2 (z2

k − z2
k−1)κ0

)
(2.90)

m̂ =
n∑
k=1

(
Q
k

1
2 (z2

k − z2
k−1) ε0 +Q

k

1
3 (z3

k − z3
k−1)κ0

)
(2.91)

These two equations can be transferred into the main system of equations, which is
delivered by the CLT. It contains the total stiffness matrix M . The corresponding
units are shown below.

 n̂
m̂

 =
A B

B D


︸ ︷︷ ︸

M

ε
κ


0

 N
mm

N

 =
 N

mm N
N Nmm

  −
1

mm


(2.92)

The matrix M with the dimension [6 x 6], also called ABD-matrix, can be subdivided
into its sub-matrices A, D and B. Each of these sub-matrices has the dimension
[3 x 3]. The elements of the in-plane stiffness matrix A are calculated by summing up
the reduced UD layer stiffnesses multiplied by their thicknesses [16].

Aij =
n∑
k=1

Qij,k (zk − zk−1) =
n∑
k=1

Qij,k tk (2.93)

In order to gain the bending stiffness matrix D, it is necessary to consider the layers’
z-coordinates [16].

Dij = 1
3

n∑
k=1

Qij,k (z3
k − z3

k−1) =
n∑
k=1

Qij,k

(
t3k
12 + tk

(
zk −

tk
2

)2)
(2.94)

The B-matrix is also called the coupling matrix. Its elements couple the in-plane
forces n̂ with the out-of-plane curvatures κ0 and the out-of-plane moments m̂ with the
in-plane stresses ε0 [16].
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Bij = 1
2

n∑
k=1

Qij,k (z2
k − z2

k−1) =
n∑
k=1

Qij,k tk

(
zk −

tk
2

)
(2.95)

In case of a symmetrical build-up of the multi-layer composite plate, the elements of the
matrix B equal zero. Hence, there is no coupling of in-plane and out-of-plane operands.
Due to the fact that the sandwich specimens used in this work are symmetrical, the
elements Bij are supposed to equal zero.
Further, there should be a closer look at the elements Aij and Dij to examine how

they are interpreted. For the case that all elements Bij equal zero, the following
correlations can be stated:

n̂ = Aε (2.96)

m̂ = Dκ (2.97)

With respect to the simple relation σ = F
A
and considering Eq. (2.96) it is possible to

formulate:

σ = 1
tsw

N̂

b
= 1
tsw

n̂ = 1
tsw

A︸ ︷︷ ︸
E

ε (2.98)

In addition, with κ = −w′′ [16] and with respect to the bending line equation (see
Eq. (2.112) in Subsect. 2.7.2), Eq. (2.97) can be rewritten as:

M = bD︸︷︷︸
E I

(−w′′) (2.99)

Consequently, the elements Aij and Dij can be interpreted by transforming them to
the in-plane elements Eij and the bending stiffnesses B = Eij I.
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Eij = 1
tsw

Aij (2.100)

B = Eij I = bDij (2.101)

That means that the elements of the multi-layer composite stiffness sub-matrix A

and D are not directly interpreted as in-plane stiffnesses or bending stiffnesses. The
required transformations as derived above are in agreement with the corresponding
units.
Nevertheless, it is important to mention the fact that all elements of the total

stiffness matrixM are calculated using the reduced matrix Q. Hence, their transversal
contraction is restricted due to plane stress conditions. In order to obtain the elements
without restricted transversal contraction, a further transformation is needed using the
elements of the inverse matrix M−1.

Aij,not restricted = 1
A−1
ij

(2.102)

Dij,not restricted = 1
D−1
ij

(2.103)

Bij,not restricted = 1
B−1
ij

(2.104)

Finally, by inserting Eq. (2.102) in Eq. (2.100) and Eq. (2.103) in Eq. (2.101) the engi-
neer constants of the sandwich are obtained:

Eij,sw = 1
tsw

1
A−1
ij

(2.105)

Bsw = Eij,sw Isw = b
1

D−1
ij

(2.106)
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For the purpose of comparison with results from the four point bending test, the
bending stiffness elements Dij are important. The element D11 represents the bending
stiffness Bx, i.e. the stiffness, which counteracts against a moment acting about the
plate’s y-axis causing strains in x-direction.
The CLT calculations, more precisely the calculation of the total stiffness matrixM

and its inverse matrix M−1 and the engineer constants are integrated in the stiffness
calculation model.

2.6 Four Point Bending Test Configuration

As the bending stiffness is one of the most critical stiffnesses considering the possible
buckling failure modes of sandwich panels, the decision was made to perform four point
bending tests according to engineer standards. The main advantage of a four point
bending configuration is the fact that the bending moment between the loading bars
is constant, while the acting shear force equals zero. That allows a simple calculative
application of the bending line theory.
To perform a test, which guarantees a satisfying level of reproducibility and com-

parability, the four point bending test is usually done according to a suitable engineer
standard. There are two engineer standards that come into consideration when per-
forming a four point bending test. On the one hand there is the German standard
DIN 53 293 published by the Deutsches Institut für Normung (DIN) [17] and on the
other hand there is the ASTM C393/C393M by the American Society for Testing and
Materials (ASTM) [18]. Both standards and the mechanical theory behind a four
point bending test are described in the following subsection.

2.6.1 Engineer Standards and Load Distribution

Both the DIN 53 293 and the ASTM C393/C393M are suitable for a four point load-
ing configuration with sandwich beam constructions. But the standards differ in their
guidelines concerning the test apparatus configuration and the test specimen’s geome-
tries. For the choice of the standard used for this thesis, former experience on four
point testing with sandwich specimens was the determining factor. While the DIN
53 293 gives several strict specifications on the specimen’s geometry and the distances
of the test apparatus, the ASTM C393/C393M is much less strict.

50



2 THEORETICAL WORK

In the DIN 53 293 the sandwich specimen is defined by the length L, the width b and
the total thickness h. The sandwich’s cross-section itself is defined by h accordingly,
the face sheet thickness t and the core thickness c. Here it is assumed that the sandwich
is symmetrical, so that upper and lower face sheets are equally thick. In addition, d
is defined as the distance between the center planes of the face sheets.

d = c+ t = h+ c

2 (2.107)

In an early point in time of this thesis, the decision had to be made, what thickness
the balsa wooden core plates shall have. At this point the only references available was
the work from Nickel [3] on the one side and on the other side there were experimental
data from former four point bending tests that have been performed at the IWES. The
sandwich specimens that have been used back then, had balsa cores with a thickness
of 25mm. Nickel used core thicknesses between 10mm and 25mm for the foam core
specimens. Hence, for the reason of comparability, balsa plates with a thickness of
25.4mm (1 in.) and 12.7mm (1

2 in.) have been ordered within the scope of this thesis.
Also with respect to the former sandwich specimens, the face sheets were roughly
estimated to be 2.0mm to 2.5mm in thickness each.
The length L of the sandwich specimen is strictly given in the DIN 53 293 in depen-

dency of the thickness h as follows:

L = 24h (2.108)

For a sandwich with a thickness of h = 30mm the length would be 720mm. The
full dimensions of the ordered balsa plate were 1220 x 610mm. So a specimen length
larger than 610mm would result in a large amount of cut-off when manufacturing.
Additionally, there might occur restrictions concerning the available space inside the
apparatus that is used for performing the four point bending test.
Furthermore, the usage of the equations given in the DIN 53 293 standard is only

valid under two more conditions, which concern the ratio of thicknesses d and t and
the bending stiffnesses of face sheet and core material. However, these requirements
are not mentioned in this thesis, because they are not the leading point in the decision
making of what standard is used.
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Regarding the argumentation above, the decision was made to use the ASTM
C393/C393M-16 standard (further named as ASTM C393). The addition "-16" refers
to the published version of this standard as this was the active standard at the time
of preparing the bending experiment. The later published "-20" version was not con-
sulted.
The ASTM C393 is suitable both for a three point loading configuration and for a

four point loading configuration. The three point loading is denominated as standard
configuration while the four point loading is non-standard. The dimensions of the
test apparatus are defined by the support span length S and the load span length
L. Assuming a centered build-up, the corresponding distance between support bar
and loading bar is called DSL. The standard defines two different variants of con-
figurations: quarter-span and third-span. Table 2.2 shows the data for all mentioned
configurations.

Table 2.2: Loading configurations according to ASTM C393

Configuration S L DSL

Standard 3-Point (Mid-Span) 150mm 0.0 S/2
Non-Standard 4-Point (Quarter-Span) S S/2 S/4

4-Point (Third-Span) S S/3 S/3

The support span length S can be chosen arbitrarily in a suitable way as long as no
application of the equations given in the standard is required. In the present case of
this thesis, it is not planned to use any of the given equations for later calculations.
Otherwise the following condition has to be fulfilled:

S ≤ 2 k σ t
FS

+ L (2.109)

where: k = facing strength factor to ensure core failure (recommend k = 0.75)
σ = expected facing ultimate strength [MPa]
t = face sheet thickness [mm]
FS = estimated core shear strength [MPa]

Another requirement for using the standard’s equations is that the face sheets have the
same thickness and modulus (symmetrical sandwich) and that the face sheet thickness
t is small in relation to the core thickness c.
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t

c
≤ 0.1 (2.110)

As opposed to the DIN standard, the ASTM C393 does not require a specimen length,
which is in dependence on the specimen’s thickness. Instead, for the non-standard
configurations, the specimen length a shall be equal to either S + 50mm or S + d

2 ,
whatever is greater. Here d is the total sandwich thickness. The face sheet thickness t
and the core thickness c are defined as in the DIN 53 293. The specimen width b shall
be not less than 2 d and not exceed 6 d. In addition b shall not be greater than a

2 . If
the core consists of countable elements, like blocks in the case of a contoured balsa
core with slits, the specimen’s width shall contain at least three times the dimensions
of an element.
The test configuration and the distribution of the occurring mechanical loads are

shown in Fig. 2.18.
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Figure 2.18: Test build-up according to ASTM C393
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The acting forces on the sandwich specimen when a loading force F is applied in the
center between the loading bars do all have the absolute value 1

2 F . The negative forces
at the positions of the support bars counter those, which act in positive direction at
the loading bar positions. This results in the given distribution of shear force Q (blue)
and bending moment M (red). It can be distinguished between region I and region
II. For applying the bending line theory, the bending moment distribution My(x)
in region II is needed. Additionally, the vertical displacements fs (at support bar
position) and fm (at mid-beam position) are measured.

2.6.2 Bending Line Theory

The bending line theory is used in order to determine the bending stiffness from the
data gained in the four point bending test. More precisely, it is possible to calculate
the bending stiffness that leads to strains in the specimen’s longitudinal direction. For
the reason of terminology, in this subsection the specimen shall be named as beam to
match with literature of the topic bending line. The longitudinal direction is defined
as the beam’s x-direction. Hence, the basic equation of the bending line is given in
dependence of the longitudinal variable x [19].

w′′(x)
(1 + w′(x)2) 3

2
= − My(x)

Ex(x) Iy(x) (2.111)

Equation (2.111) is not linear, but it can be approximated with the assumption that the
vertical displacement w(x) of the beam is small enough to keep the slope w′(x)� 1.
This assumption equals a linear elastic behaviour of the beam. What remains is
Eq. (2.112), the 2nd order differential equation of the bending line [3].

w′′(x) = − My(x)
Ex(x) Iy(x) = −My(x)

Bx(x) (2.112)

Here, w′′(x) is the curvature, My(x) is the acting bending moment and Ex(x) Iy(x)
can be combined to the bending stiffness Bx(x) at the longitudinal position x. Ex(x)
is the Young’s modulus in x-direction and Iy(x) is the area moment of inertia for a
bending rotation relative to the beam’s y-axis.
With reference to the former depicted moment distribution (Fig. 2.18) it is now

possible to define the bending moment distributions for region II as follows:
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MII(x) = 1
2 F DSL with x ∈ [DSL,

S

2 ] (2.113)

After insertion into Eq. (2.112), the curvature w′′II(x) can be integrated in order to gain
the slope w′II(x) and the measurable vertical displacement wII(x) with the integration
constants C1 and C2.

w′′II(x) = −MII(x)
Bx(x) = − F DSL

2Bx(x) (2.114)

w′II(x) = − F DSL

2Bx(x) x+ C1 (2.115)

wII(x) = − F DSL

4Bx(x) x
2 + C1 x+ C2 (2.116)

The integration constants C1 and C2 can be calculated by having a look on the bound-
ary conditions within the four point bending configuration. Firstly, it is obvious that
the slope w′II(x) at the beam’s mid-position equals zero:

w′II(x = S

2 ) = 0 ⇔ C1 = F DSL S

4Bx(x) (2.117)

C2 can be obtained by assuming that wII(x = DSL) = wI(x = DSL). For doing so,
wI(x) has to be derived in the equivalent way as wII(x) is derived in Eqs. (2.113 to
2.116). For the sake of simplicity, those steps are not described in detail in this thesis.
Instead, the derivation can be looked up in the work from Nickel, which this thesis is
based on [3, pp. 29,30]. The integration constant C2 finally is calculated as:

C2 = − F D3
SL

12Bx(x) (2.118)

Hence, the complete equation for wII(x) can be written down inserting C1 and C2.

wII(x) = − F DSL

4Bx(x) x
2 + F DSL S

4Bx(x) x−
F D3

SL

12Bx(x) (2.119)

55



2 THEORETICAL WORK

By inserting the measured vertical displacements fs or fm for wII(x) and the corre-
sponding force F at the positions x = DSL or x = S

2 it is now possible to determine
the bending stiffness Bx(x).

Bx(x) = −DSL F (3x (x− S) +D2
SL)

12wII(x) (2.120)
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3 Experimental Methods and
Procedures

This chapter at first deals with the methods and procedures of the experiments that
have been done in order to investigate the balsa wood material behaviour. These
experiments all contribute to the resulting plate geometry in the model’s calculation
process. Furthermore pure balsa wood plates are infused without glass-fiber layers for
the purpose of validation of the model’s mass calculation methods. The chapter closes
with detailed explanations concerning all relevant aspects of the four point bending
tests. Besides the test apparatus configuration that includes the manufacturing process
of the specimens and the derivation of the equations used to determine the specimens’
stiffnesses with the data gained from the bending tests.

3.1 Research on Balsa Wood Material Behaviour

Balsa wood is a naturally grown material that reacts on the environmental conditions,
which it is exposed to. Hence, its geometry is depending to a relatively large extend
on parameters like wood moisture or on the curing effect of resin that surrounds or
penetrates the balsa wood core. Additionally, the vacuum leads to further reduction
of moisture content, so there has been an experiment, too.

3.1.1 Wood Moisture

Balsa wood in general is a material that is preferred amongst others due to its low
density. This low density originates from the high amount of empty cell volume inside
the wood. In Table 2.1 the solid fraction of each cell type can be seen. It shows that
each cell of MD balsa for example has a solid fraction, which does not exceed a value
of roughly 10%. So the majority of volume inside a piece of balsa wood is empty.
However, with regard to the moisture content, it is the solid cell wall material, which
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is capable of containing water even at moisture contents that appear in industrial
environments.
The moisture content of wood is usually measured in mass percent. That means

that the measured value in % represents the fraction of water mass that is bound
inside the wood relative to the dry mass of the wood. Wood that has been lumbered
recently can have moisture contents of 100% or higher. In this case the cell walls
and the inner cell lumens are completely filled with water. For industrial subsequent
treatment the wood is dried. Balsa wood plates show moisture contents of about 10%.
At such low moisture content the cell lumens are not filled with water any more. But
the remaining water is bound inside the cell wall material and affects significantly its
geometry. The cell walls then behave more or less like a sponge. Thus, the wood
experiences shrinkage and swelling, that depends on its moisture content on the one
side and on the wood’s orientation on the other side, because wood generally shrinks
and swells differently regarding axial, tangential and radial direction. The geometry
change in axial direction (vertical balsa plate direction z) is assumed to be neglectably
small [20].
The shrinkage/swelling behaviour of balsa wood is investigated by performing an ex-

periment. For this experiment a large number of balsa blocks is individually separated
from a contoured balsa wood plate (nominal contoured block geometry: 50.8 x 25.4mm).
Then their density is predetermined by weighting each block and setting the block’s
weight in relation to the nominal block volume. From the gained list of blocks 30
blocks are chosen as samples for the experiment. Within the scope of this thesis balsa
plates of two different thicknesses have been ordered from Gaugler&Lutz, 25.4mm
(1 in.) and 12.7mm (1

2 in.). One half of the 30 samples has the thickness 25.4mm,
the other half is 12.7mm thick. In addition, each 15 samples are divided into the
three different density classes ρL (low density), ρM (medium density) and ρH (high
density) depending on what range of densities is on hand. The used balsa wood plates
both are of type BALTEK SB.100 with an apparent nominal density of 148 kg

m3 and
a minimum sheet density of 136 kg

m3 (manufacturer’s data). After predetermination of
the densities, all blocks are oven-dried at 45 °C for at least 16 h. Then their length,
width and thickness is measured and the samples are weighted again. Thus the actual
air-dry density is determined.
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Table 3.1: Density classes for wood moisture experiment

ρL ρM ρH
Samples
ρmin [ kg

m3 ] 78.95 120.38 145.94
ρmax [ kg

m3 ] 120.85 149.18 179.32
Defined ranges

ρ [ kg
m3 ] <120 120 to 150 >150

Table 3.1 shows the minimum and maximum of the determined air-dry density values
in each density class. According to these values the range for the experiment is defined.
So five samples of the 15 samples per thickness do share one density class.
The dry samples are now exposed to an environment with a constant temperature

of 23 °C and a variable relative air humidity. This is done by placing the samples
into a climate chamber. The relative air humidity is set to 50% before bringing in
the balsa samples. Then after 2 h of exposure time the air humidity is increased by
steps of +10% up to finally 80%. Between every step of +10% air humidity, 2 h
elapse. The 15 samples are subdivided into five groups of three samples, each group
containing samples of each density class. While one group of samples stays inside the
climate chamber continuously throughout all steps of air humidity, each group of the
remaining four is put inside the climate chamber at one of the four steps (air humidity:
50%, 60%, 70%, 80%). Before each step, i.e. after 2 h of exposure time the samples
are weighted and their geometry and wood moisture content is measured.
For the measurement of the wood moisture content, the material moisture measuring

device T510 from the company Trotec GmbH is used. The moisture is measured
according to the resistance measurement method. A measuring current is generated
within the material via electrodes, which are inserted into the wood. Depending
on the water content the material’s resistance and its conductivity changes. The
Trotec T510 has an integrated temperature compensation and wood type correction
including balsa wood. The absolute error in mass percent is depending on the actual
measured moisture. It is 0.8% for a measured moisture of 0 to 5%, 0.2% for a
measured moisture of 6 to 30% and 0.1% for a measured moisture of 31 to 100%. The
measurement of block length, width and thickness is done with a caliper gauge from
the company Mitutoyo having a digital display. The samples’ weight is determined
using an analytical balance from the company RADWAG. The climate chamber is the
model KBF240, fabricated by BINDER GmbH.
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3.1.2 Vacuum

During the VARTM process the balsa core plate is exposed to vacuum for a certain
time. This condition is assumed to be another factor that might influence the moisture
content and thus the geometry of the balsa blocks. For the investigation of that influ-
ence a total number of nine balsa block samples (50.8 x 25.4mm) is chosen from the
separated balsa block samples that have been already used for the moisture content
experiment. Three samples each belong to one of the density classes that are intro-
duced in Table 3.1. Two samples out of three have a nominal thickness of 12.7mm,
the third one is 25.4mm in thickness.
The experiment shall reveal how the vacuum influences the wood moisture content

quantitatively over time. It is assumed that the vacuum leads to a remarkable loss
of moisture content. That is why the wood moisture content has to be increased at
first. Therefore, all nine balsa samples are placed inside the climate chamber first in
order to expose them to a relative air humidity of 80% at a constant temperature of
23 °C. The time duration shall be long enough to ensure a moisture content of about
15% to make a potential decrease recognizable. With respect to the former performed
moisture experiment this are roughly 6 to 8 h. Afterwards, all samples are removed
from the climate chamber and put aside for measurements. The measured quantities
are length, width, thickness, weight and moisture content. Then the samples are
covered by a vacuum film, which is closed like a bag to contain all samples. With a
negative pressure of about -0.9 bar to -0.95 bar the vacuum is applied for a duration
of 30min. After this time has elapsed, the samples are removed from the vacuum
bag and previously mentioned measurements are repeated. The procedure is done two
more times until the samples have been exposed to vacuum for 1.5 h in total.
The measuring instruments are widely the same as used for the previously presented

moisture content experiment, but with an exception here. For measuring the width and
the thickness of each balsa block (not the length), a spring loaded digital caliper gauge
(model: STUDENROTH Hildegard) is used to ensure a more precise determination
of the respective lengths by applying constant and reproducible pressure when the
gauge gets into contact with the sample. As the gauge’s maximum limit is 30mm the
metering range is not sufficiently large to enable the measurement of the length, too.
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3.1.3 Resin Infusion and Curing

A third experiment is done to investigate the geometry change of the balsa blocks as
part of a large balsa plate. More precisely, the expanding of the slit widths between
the balsa blocks during resin infusion and curing process is of interest here. In the
first place, the aim is to gain knowledge about to what extend the resin infusion and
curing contribute to the total slit width quantitatively. For the model it is assumed
that the balsa blocks stay at their individual position while the liquid resin fills the
slits and in doing so presses against the lateral surfaces of the balsa blocks. The resin
thus widens the minimal open slits. Additionally, former investigation has shown that
the resin experiences a chemical volume shrinkage during the curing process when
changing from liquid to hardened state [21].
For this experiment, a contoured balsa core plate of type BALTEK SB.100 with a

nominal thickness of 25.4mm and a nominal block size of 50.8 x 25.4mm is used. This
plate is later referred to as plate A as it is used for the validation of the model’s mass
calculation. In order to assure an air-dry core plate, the plate is oven-dried. An average
measured moisture content of about 5% is intended and finally achieved. After drying,
the plate’s geometry is measured to 1195 x 402mm and the plate is also weighed. The
aim is to spectate the slits in close-up view during resin infusion and curing. Thus the
infusion of the pure core plate is done on a glass plate. The close-up view on a few
slits in the middle of the plate is realized by two cameras, which are each equipped
with a time-adjustable remote-control release to ensure automatic photography while
the resin is impregnating the balsa wood core. Additional photographs are made after
the curing process. Then the plate is trimmed and the weight is determined using a
balance.
The slit widths are determined by metallic rulers, which are fixed at the bottom

side of the glass plate so that they are part of the photographs.
Besides plate A two more balsa plates are purely infused, being referred to as plate

B and plate C. In the first place these further resin infusion experiments are done to
gain more validation data for the mass calculation methods of the model. However,
the fabricated core plates also serve as smaller sized samples, which are suitable for
being investigated with an optical microscope. Thus, the slit size is measured on
microscopic level with the help of the corresponding software. Before infusion Plate
B has a nominal thickness of 25.4mm and is 561.5 x 257mm in size, measured with a
ruler. Plate C is a thin plate having a nominal thickness of 12.7mm and a measured
size of 559 x 254.5mm. Nominally the length and width of both plates are the same
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since they have been cut according to the same block pattern. After the infusion and
curing, the excessive hardened resin is removed from the manufactured plates. Finally,
the plates are weighed and their geometry is measured with a metallic ruler.

3.2 Four Point Bending Test

In order to gain experimental results for the model validation the sandwich’s bending
and shear stiffness is determined by performing a four point bending test of the test
specimens. This section begins with a brief description of what kind of test apparatus
is used to apply the testing machine’s load in a correct manner to the specimen. Then
the manufacturing of the sandwich specimens, especially the build-up of the face sheet
layers, is presented. Furthermore, the actual experimental set-up including the final
distances between the support and loading bars and the test procedure is described.
The section closes with the derivation of the equations used for the calculation of
bending and shear stiffness.

3.2.1 Test Apparatus

The test apparatus for the four point bending test (see Figure 3.2) consists of two
separated parts, one upper part and one bottom part. Each part is made of alloy
profiles, which are mounted in a proper way to enable the possibility to variably attach
the support and loading bars. The bars themselves are single units, each consisting
of two rotational bearings and one cylinder. They are fixed to the alloy parts via
screws at desired position. The actual support/loading bar again is mounted on the
rotational cylinder and thus the apparatus allows free rotational movement of the
specimen at the points of loading during the bending test. Since the surface of the
bars is in contact to the specimen, rubber pressure pads do cover the contact surfaces.
The support’s width is large enough to exceed the width of the sandwich specimens.
On both the upper and the bottom part a steel profile is mounted where the test
apparatus is clamped into the test machine.

3.2.2 Manufacturing and Geometry of Specimens

As the developed model is suitable for plane sandwich plates of arbitrary size, it is
evident to perform the bending test using sandwich specimens according to an engineer
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standard. As explained in Subsect. 2.6.1 for sizing the sandwich specimen the engineer
standard ASTM C393/C393M is used.
The specimens are manufactured at IWES. It is reasonable to do a resin infusion

for a large sandwich plate at first and to cut it afterwards in the postulated size. The
used dry balsa wood plates from Gaugler&Lutz measure in total 760 x 610mm and
686 x 610mm. The balsa wood is of type BALTEK SB.100 and the plates both are
contoured with a nominal block size of 50.8 x 25.4mm. The specimens shall cover two
different core thicknesses in order to get an idea of how the model’s predictions and
especially the resin uptake are influenced regarding two plates only differing by their
balsa core thickness. For the thin specimens a nominal core thickness of 12.7mm is
used. The larger plate also has the larger thickness of 25.4mm.
The remaining definition of the face sheet layer stacking sequence is done with regard

to former performed flexural beam tests, more precisely four point bending fatigue
tests. Within this test series, static bending tests have been done in advance until
failure of the sandwich specimens. So the stacking sequence of the glass-fiber layers is
chosen in accordance to experience that has been gained by the mentioned static tests
to ensure a failure of the specimen with the known testing configuration. Almost all
parameters of the experimental set-up are taken from the former experiment, too.
The laminate layer stacking sequence is fully defined by coding the layers of one

face sheet as follows:

[(0/90)2/(±45)2]

The codification describes the number of UD layers, their fiber angle α and the stacking
sequence of the single layers. In the present case the code, read from left to right,
represents the layers being stacked from the bottom to the core plate. So this means
that one face sheet begins with two layers of glass-fiber non-crimp fabric, each having
one UD layer with a fiber angle of 0° and one UD layer with a fiber angle of 90°. On
top of these two fabrics another two layers of non-crimp fabric is placed, this time
with ±45° fiber angle. So there are eight UD layers in total per face sheet. The
upper face sheet is manufactured symmetrically relative to the core’s center plane to
ensure a symmetrical sandwich as required in the standard. For all non-crimp fabric
layers E-Glass from the company SAERTEX with a mass per unit area of 778 g

m2 (see
AppendixA). This face sheet layer layout is used for both core thicknesses.
For the resin infusion an infusion resin system consisting of the EpikoteTM Resin

MGS RIMR 035C and the Epikure Curing Agent MGS RIMR 037 from HEXION is
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used (see AppendixB). As far as possible the curing cycle has been adhered to the
following steps:

1. infusion at 35 °C
2. curing at 40 °C for 10 h
3. increase in temperature up to 80 °C (rate: 10 °C/h), curing at 80 °C for 7 h
4. cooling at room temperature

After the two sandwich plates have finished curing, the specimen are cut out of the
plates. The desired specimen length is taken from the intended to equal 550mm based
on experience from the mention former experiments. The specimens’ width is not
constant as it depends on the block width (core element width) of the contoured balsa
core. At least three core elements are required in width. That is equal to a nominal
specimen width of 76.2mm. However, due to the resin inside the slits between the
blocks and the irregular dry block size, the width of the specimens varies. Actually it
is important to stick with the three element width regarding the conformity with the
symmetry of the specimen’s slit pattern.
Figure 3.1 exemplarily shows a thin sandwich specimen.

Figure 3.1: Top and side view of a specimen

Eight sandwich specimens are gained out of each plate and their geometry is measured
using caliper gauges (Mitutoyo and STUDENROTH Hildegard) and a metallic ruler.
Each specimen is weighed. The geometries (length L, width W and thickness tsw) of
all 16 specimens are given in Table 3.2.
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Table 3.2: Specimens’ geometries

tC,nom L W tsw
[mm] [mm] [mm] [mm]

Spec. No.
1 12.7 550 73.37 17.09
2 12.7 550 73.32 17.05
3 12.7 550 72.19 17.14
4 12.7 550 74.97 17.07
5 12.7 550 72.21 16.99
6 12.7 550 73.06 17.12
7 12.7 550 73.16 17.06
8 12.7 550 73.37 17.19
9 25.4 550 75.44 29.77
10 25.4 550 71.10 29.81
11 25.4 550 72.36 29.91
12 25.4 550 73.40 29.91
13 25.4 550 72.65 29.82
14 25.4 550 72.72 29.68
15 25.4 550 76.37 29.67
16 25.4 550 70.44 29.76

3.2.3 Experimental Set-Up

The experimental set-up that is chosen for the four point bending test can be seen in
Fig. 3.2.

The test apparatus is fixed to the test machine. The test machine itself is a bi-axial
universal testing machine of type LFV 100 kN, manufactured by Walter+Bai AG.
Thus it is able to bring up forces in axial direction up to a nominal force of 100 kN.
The chosen distances of the support and loading bars are not in accordance with the
engineer standard, since they base on experience from similar sandwich bending tests.
Figure 3.3 illustrates the final test configuration for the four point bending test of all
specimen.

For applying the bending line theory in order to determine the bending stiffness, it
is necessary to measure the vertical displacements at the loading bar position and if
desired at mid-beam position. Due to that reason a laser distance sensor is installed
on the lower part of the test apparatus pointing at the specimen’s lower mid-surface
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Figure 3.2: Experimental set-up with installed sandwich specimen

position. The measuring range of the laser distance sensor is limited to a certain
distance measured from the device’s edge. This results in a maximum measurable
vertical displacement of 20mm at mid-beam position. An extension of that limit is
not possible since the laser sensor’s positioning is restricted with regard to the available
free space of the test apparatus.
The vertical displacement at loading bar position is assumed to be equal to the path

of the machine’s cross head. That machine path is measured by a linear variable dif-
ferential transformer (LVDT). When applying the bending line theory a high accuracy
of the measured vertical displacements is essential as it can influence the calculated
bending stiffness significantly. The most accurate way would be a measurement of
the vertical displacement along the sandwich beam’s mid-plane. Unfortunately that
is practically not measurable, so the displacement at the sandwich’s surface is taken
for the bending line calculation instead. Another error might occur due the resilience
of the cross head itself when acting loads on to specimens with high stiffness. This
would lead to larger measured vertical distances at loading bar position. Hence, the
measured vertical displacement might be corrected.
To ensure the determination of the bending stiffness, the decision has been made

to also apply strain gauges both to the upper surface side and the lower surface side
of each sandwich specimen, centered at mid-beam position. With the help of the
measured strains it is possible to calculate the bending stiffness independent of any
influence from the test machine resilience. As the upper surface of the specimen
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L

S

DSL

S = 440mm
L = 82mm
DSL = 179mm

Figure 3.3: Test configuration

experiences a compressive force the strain is expected to be negative, whereas the
strain gauge at the lower surface is expected to measure positive tensile strains of the
same amount.

3.2.4 Test Procedure

Here, the test procedure shall briefly be described for the four point bending test
of one sandwich specimen. The test specimen is equipped with the strain gauges as
previously described. Then it is installed in centered position onto the test apparatus
and the strain gauges are connected. Now the cross head is lowered manually until
the rubber pads of the upper half of the test apparatus gets into contact with the
specimen’s surface. This is done while checking the contact force in order to ensure
a zero load position before starting the test. After the positioning of the cross head
all measured parameters (load, machine path, mid-beam distance to laser sensor and
strains) are zeroed. The test is done path-controlled by holding a standard speed
for cross head displacement of 6 mm

min according to ASTM C393 [18, p. 5]. Since the
laser distance sensor limits the possible vertical beam displacement, the cross head is
programmed to stop automatically at a measured machine path of 30mm and return
to home position. In case of specimen failure, the home position is reached via manual
input.

3.2.5 Determination of Mass and Stiffnesses

The masses of the sandwich specimens are determined by weighing. Of course this is
done before performing the bending test.
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There are two different kinds of stiffnesses that are determined by using gained
data from the four point bending tests. The first stiffness to be determined is the
bending stiffness Bx, defined as stiffness that counteracts against a moment acting
about the plate’s y-axis causing strains in x-direction. This stiffness is calculated
using Eq. (2.120):

Bx(x) = −DSL F (3x (x− S) +D2
SL)

12wII(x) (2.120)

This equation is valid both for the loading bar position x = DSL and the mid-beam
position x = S

2 since it contains the vertical displacement wII(x). Accordingly, this
equation delivers two different calculated bending stiffnesses. The force F and the
measured vertical displacement wII(x) have to be inserted as ∆F and ∆wII(x) re-
spectively. These values are taken from the force-displacement plot of each specimen
tested. When presenting the results in Chapt. 4 and 5, the bending stiffness at mid-
beam position using the measured displacement fm is denoted as Bx,fm. The bending
stiffness at loading bar position using fs is further denoted as Bx,fs.
A third way to determine Bx is its calculation via measured strains in x-direction.

The strain resulting from pure bending εb can be derived according to Nickel [3,
pp. 42,43] using the upper side strain εu and the lower side strain εl:

εb = εl − εu
2 (3.1)

In further calculation, here also ∆ εb is taken using ∆ εu and ∆ εl as gained from the
force-strain plot. Equation (2.112) can be rewritten as:

Bx = −M
w′′

= M

κ
(3.2)

When considering pure bending the curvature κ is equal to the pure bending strain εb
divided by the z-distance from the beam’s mid-plane to one of its surface.

κ = εb
tsw

2
= 2 εb
tsw

(3.3)
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Inserting Eq. (3.3) into Eq. (3.2) and considering the bending moment being ∆M =
∆F

2 DSL delivers the equation for calculating the bending stiffness Bx,ε based on strain
data.

Bx,ε =
∆F

2 DSL tsw
2 ∆ εb

= ∆F DSL tsw
4 ∆ εb

(3.4)

The second kind of stiffness to be determined is the transverse shear stiffness, repre-
sented by the shear modulus Gxz. As a shear force Q = 1

2 F is acting in the beam
area between the support and the loading bar (area I), there is also a shear force to
be considered at the loading bar position x = DSL. Hence, the measured vertical dis-
placement fs occurs as an interaction of a shear displacement fs,sh and a displacement
resulting from pure bending fs,b. The shear displacement can thus be determined as
follows:

fs,sh = fs − fs,b (3.5)

The pure bending displacement fs,b is calculated via Eq. (2.119) using the bending
stiffness as determined with the help of the strains Bx,ε. The strain based bending
stiffness is used here due to two reasons. The first reason is that for the tests of five
thick sandwich specimens the laser distance sensor has been removed from the test
apparatus due to the danger of taking damage during specimen failure. So there are no
data available for the usage of Bx,fm for the respective specimens. The second reason
is that Bx,fs is considered to be less accurate as the resilience of the cross head and
further parts of the test machine has significant influence on the measured machine
path fs. The shear strain γxz,sw is further gained using the distance DSL:

γxz,sw = ∂ wsh
∂ x

= fs,sh
DSL

(3.6)

According to Wiedemann [22, pp. 223-227] the shear stiffness can be described by the
quotient of the respective acting shear force nsh,xz = Nsh,xz

by,sw
and shear strain. The shear

force here is normalized by the sandwich’s width by,sw. Since the shear modulus in
general is defined as G = τ

γ
with τ = Nsh,xz

by,sw tsw
the defined shear stiffness is divided by

tsw to obtain the shear modulus Gxz as a quantity of the unit N
m2 .
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Gxz = nsh,xz
γxz,sw

1
tsw

=
F
2 b

γxz,sw

1
tsw

(3.7)
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4 Experimental Results on Balsa
Wood Material Behaviour

The results from the experiments described in the previous chapter contribute to the
sandwich model calculation. So in this chapter the results are partly shown and the
according implementation of the balsa wood behaviour into the analytical model is
described.
By performing the experiments regarding the wood moisture, the influence of vac-

uum during the infusion process and of the resin infusion and curing on the geometry
of balsa wood the main aim has been to get data that allow a correction of the total
plate geometry within the model calculation. At this point it is necessary to mention
that the model has two implemented ways to determine the final resulting geometry
of the total infused plate. While the thickness of the infused plate is assumed to stay
constant as it will be substantiated in this section, the in-plane dimensions (length and
width) do change, so they have to be corrected. In the model these corrections affect
the total plate size as it is measured after receiving and before infusion. With the men-
tioned corrections, the dimensions for the resulting infused plate are calculated. But
the consideration of these plate corrections is no longer valid if the final resulting plate
dimensions are defined by trimming the original plate, for example when specimens
are cut out of the plate. The dimensions of a specimen are then seen as predefined
in the model and no automatic plate correction is executed. Hence, a trimming mode
can be set. The mode "Trimming to final Plate Geometry" enables to manually set
the length and width of the final infused plate, e.g. of a specimen. Then the plate
corrections are neglected. The other available mode is "Measures to be trimmed".
Here the shortening in length and width by trimming can be defined. These ∆-values
are subtracted from the plate dimensions in addition to the plate corrections, which
are now active since the final dimensions are not predefined. By setting both ∆-values
for length and width to zero, only the plate corrections are taken into account for the
calculation of the final infused plate geometry.
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4.0.1 Wood Moisture

The investigation of the behaviour of balsa wood concerning the moisture content
showed an decrease both in length and width of the tested balsa samples with increas-
ing moisture content. This measured correlation is in accordance with the expectation
that balsa wood experiences a swelling as the cell walls expand with increasing mois-
ture content. Less wood moisture in turn leads to a shrinkage of the balsa block.
The measured length, width and thickness of the samples are plotted against the

moisture content. The measured wood moisture ranges from about 4% to approxi-
mately 16%. Then a linear regression line is applied to each series of data points. From
each of the gained regression lines the gradient is determined. Afterwards all gradients
are sorted by the density class that each sample is belonging to (see Table 3.1). For
each density class the average dimension change gradients are determined. So there
is one gradient k for each measured geometrical quantity per density class. Figure 4.1
illustrates the gained gradients k exemplarily for the medium-density class.

Figure 4.1: Dimension change gradient for medium-density balsa

The gradient k as shown for the medium-density balsa is representative for all three
density classes as the gradient does not differ much. Due to the fact that the balsa sam-
ples used for the wood moisture experiment only cover a density range from 78.95 kg

m3

to 179.32 kg
m3 the average densities of samples of each density class are rather close to

one another. Thus, it is reasonable that the swelling/shrinkage behaviour also does
not differ that much. In addition it can be stated that in case of a reduction of the
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moisture content, the balsa wood’s thickness is not affected significantly. Hence, the
thickness is not changed in the model calculation.
The determined dimension change gradients are implemented into the model. For

the calculation of the geometry change the model requires the input of the measured
moisture content after receiving the core plate and shortly before infusion. Then the
gradient k is used to perform a linear change of each the block’s length and the block’s
width. Thus a ∆dim-value for both dimensions is determined. With a given moisture
content measured after receiving the plate H1 and a moisture content measured before
infusion H2 the correction is done as follows:

∆dim = kdim (H2 −H1) (4.1)

Previously in this thesis the assumption was stated that each single balsa block stays
at its initial position, because it is fixed to the glass-fiber fabric at its bottom surface.
Taking this assumption into account, the model determines the corrected total plate
length by subtracting the change in length of one balsa block from the total measured
plate length. This is equal to the shrinkage of half a block at each end in length.
However, the correction is somewhat neglectable as the change in dimension does not
exceed a change of about 0.2mm at moisture contents of less than 10% as usually
have been measured without previous exposure to higher air humidity in the climate
chamber.

4.0.2 Vacuum

The influence of balsa wood being exposed to vacuum before the actual resin infusion
is simply related to the moisture content. By evacuating air from the balsa core plate’s
surface the core plate is expected to dry. This moisture reduction would then lead
to a shrinkage of the plate. The performed experiment as described in Subsect. 3.1.2
provides the measured moisture content of each sample in dependence of time while
being exposed to vacuum. The gained plots can be seen in Fig. 4.2.

It can be seen that all plotted curves tend to converge at a moisture content of about
10%. While the loss of moisture during the first 30min. seems to follow a larger gra-
dient, the moisture content stays constant after another 30min. of vacuum exposure.
The model thus only calculates a geometry change per balsa block, if the initially
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Figure 4.2: Moisture content in relation to vacuum exposure time

measured moisture content of the modelled plate is greater than 10%. The correction
is done in the same way as described in the previous section (see Eq. (4.1).

4.0.3 Resin Infusion and Curing

At this point the infused pure balsa plates shall be investigated in order to receive
reasonable values for the resulting slit widths sx and sy and the plates’ geometries.
The validation of the model’s mass calculation shall not be part of this subsection,
since it is presented in the Chapt. 5.
The slit widths of the infused plate A has been measured by metallic rulers, which

have been fixed at the lower side of the glass plate the infusion has been performed on.
Both during the infusion process and after the curing detailed photographs have been
made in order to investigate the slit width in axial and lateral direction. Figure 4.3
shows the the captured slits of plate A both before resin-infused and after infusion
and curing.

The slit width that can be determined by the photographs does not exceed a width
of roughly 0.5mm. At first glance however, the resin-filled slits appear to be larger in
width. The reason for that is the fact that the resin penetrates the outer edges of the
balsa blocks and thus these edges are no longer distinguishable without closer look.
The photograph of the dry balsa before infusion is used for specifying the setting for
the zero opening slit width in the model as 0.2mm.
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Figure 4.3: Photographs of plate A: (left) before infusion (right) after infusion and
curing

It is obvious that this argumentation is not entirely satisfying. To closer investigate
the actual slit width, plate C is spectated via an optical microscope. With the help
of the respective software the longitudinal slit width sx and the transverse slit width
sy can then be measured directly on the micrograph. The measurements are done at
five different positions across the plate’s surface. The measured slit widths are listed
in Table 4.1.

Table 4.1: Measured slit widths of plate C in longitudinal and transverse direction

sx sy
[µm] [µm]

Pos. No.
1 619.06 370.91
2 820.47 570.14
3 583.02 447.21
4 722.95 493.84
5 572.42 127.17

Practically seen there is no reason why the slit widths in longitudinal direction is
different from the slit width in transversal direction, because the distribution of the
different cell types in the plate’s xy-plane can be seen as arbitrarily orientated and
thus the shrinkage both in x-direction and y-direction is considered to be of equal
amount. For an overall value as model input preference the arithmetic mean value is
determined as smean = 532.72 µm. The model input regarding the slit widths is an
addition of the zero opening, the moisture correction and a defined widening due to
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resin and curing block shrinkage. As a resulting slit width of about 0.5mm is preferred
the zero opening and the resin influenced widening is set as 0.2mm each. A moisture
correction of about 0.1mm is plausible.
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5 Model Validation

The resulting masses and stiffnesses calculated by the model shall be compared to the
experimental results. This also includes the mass calculation model validation, which is
done by evaluating the resin-infused pure balsa core plates A, B and C. In addition one
data example from the four point bending test is shown. For the purpose of comparison
the model settings and its final calculation methods regarding the complete sandwich
(not just the infused core) are presented in advance. The comparison itself is done in
table form. Afterwards, the gained values and their reasons are discussed.

5.1 Comparison of Model Results and
Experimental Results

At the beginning of this section the purely infused balsa plates denoted as A, B and C
are modelled and the calculated masses are compared to the measurements mmeas in
order to validate the different approaches that are implemented regarding mass calcu-
lation. The different approaches to be considered are the smearing approach and the
geometrical approach. Additionally, it is distinguished between manual trimming and
without trimming (i.e. w/o or with plate correction). As input parameter the density
of the core is set as apparent nominal density (148 kg

m3 for BALTEK SB.100). The
density of the cured resin is 1.131 g

cm3 . The zero slit width and the resin caused slit
width is set as 0.2mm following the argumentation from the previous chapter. On cell
level the total fiber length Lf is defined as 650µm, hend,f equals 70 µm. The ray cell
length is 76µm. The simple linear approach on penetration depth is used. Table 5.1
shows the comparison of the results.

The relative error is determined as error of the model with the measured mass as true
value. The infusions of plates B and C have been documented strictly by measuring
all contributing mass components throughout the infusion process. For plate A this
has not been done. Since the data for plates B and C have been complete, those two
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Table 5.1: Mass results from experiment vs. model results (infusion of pure balsa
plates)

Plate A B C
mmeas [g] 2869.6 986.56 547.61

Trimming manually
mPlate,sm [g] 2600.6 940.6 509.06
rel. Error [%] -9.37 -4.66 -7.04
mPlate,geom [g] 2639.5 962.8 509.8
rel. Error [%] -8.02 -2.41 -6.9
w/o Trimming
mPlate,sm [g] n.d. 944.7 505.1
rel. Error [%] n.d. -4.24 -7.76
mPlate,geom [g] n.d. 965.2 505.2
rel. Error [%] n.d. -2.16 -7.74

plates shall be in focus of this validation. Hence, there is no modelling done for plate
A without trimming.
Besides the plate infusions the four point bending test with sandwich specimens is

the main part of the model validation process as it considers the entire FRP sand-
wich. For each of the 16 specimens the vertical displacement is plotted against the
force. This measurement is complemented by plotting the strain on upper and lower
sandwich side at center position of each specimen. The manufactured specimens are
numbered from Spec. 1 to Spec. 16. Spec. 1-8 are sandwiches with a nominal core
thickness of 12.7mm and Spec. 9-16 have a core of a doubled thickness of 25.4mm. As
an example, the plots from specimen no. 10 are shown (Fig. 5.1 and Fig. 5.2).

With regard to Fig. 5.2 it is important to mention that the used ∆F shall not include
the non-linear part of the lower side strain plot. As previously described the bending
stiffness Bx is determined in three different ways, taking into account the vertical
displacement fs, the vertical displacement fm and the measured strains. The sandwich
model however determines one value Bx,sw,model by applying the classical laminate
theory according to Eq. (2.106):

Bx,sw,model = Eij,sw Isw = b
1

D−1
11

(5.1)
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Figure 5.1: Force vs. vertical displacements (specimen no. 10)

In the calculation steps the resin-infused core is seen as one UD layer having the in-
plane stiffnesses E‖ = Ex,sm and E⊥ = Ey,sm. The smeared Young’s moduli (index:
sm) are the moduli as derived in Subsect. 2.4.2. The Poisson’s ratio is determined
by smearing the Poisson’s ratio of wood as it is described in the literature of Gibson
and Ashby [11, p. 420] and the Poisson’s ratio of resin according to the volumes of the
defined RVE for masses (Fig. 2.12). The UD layer thicknesses tk are calculated with
the help of a predefined fiber volume content (FVC) ϕ, the glass-fiber density ρf and
the area per unit mass of the used glass-fiber layer (m

A
)f .

tk =
(m
A

)f
ρf ϕ

(5.2)

The fiber volume content is defined as the volume fraction of the fibers’ volume re-
spective to the total volume of the FRP composite [16, p. 162]. When subtracting the
fibers’ volume from the total FRP composite, the matrix volume remains. Within the
model the FVC is a parameter that has to be predefined manually. The quantity of
fibers in relation to the matrix quantity can also be defined by the respective masses.
According to Schürmann the fiber mass content (FMC) ψ is defined as follows [16,
p. 167]:

ψ = ρf ϕ

ρf ϕ+ ρR (1− ϕ) (5.3)
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Figure 5.2: Force vs. strains (specimen no. 10)

The FMC is used within the model for the determination of the face sheet mass of the
sandwich. With the total mass of glass-fiber per face sheet mf,fs the total mass of the
single face sheet mfs is obtained.

mfs = mf,fs

ψ
(5.4)

Returning to the model’s sandwich stiffness calculation again there is the need to
determine the shear modulus Gxz,sw,model. Here a relation given by Allen [23, p. 137] is
used. For orthotropic faces and core and faces of equal thickness and similar material
the shearing stiffness DQx can be determined as:

DQx = GC,xz,sm
d2

tC
(5.5)

Here, d is denoted as the distance between the face sheets’ mid-planes and GC,xz,sm

is the smeared shear modulus of the resin-infused balsa wood core (see Eq. (2.63).
By dividing DQx by the sandwich thickness tsw the model’s shear modulus for the
sandwich is gained.

Gxz,sw,model = DQx
1
tsw

(5.6)
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Now all necessary quantities for both the experimental results of the sandwich and
the model results of the sandwich are derived. The model calculation is done with the
manual trimming mode. Hence, no plate corrections are done. Further the model re-
quires the predefinition of the fiber volume content ϕ. The specimens’ upper and lower
face sheet thicknesses have been measured before performing the four point bending
test. With this data, the FVC could be determined with an IWES internal calculat-
ing tool. The measured fiber volume contents then are averaged and the standard
deviation is subtracted and added to the mean value. By doing this a minimum FVC
ϕmin and a maximum FVC ϕmax are determined for each the thin sandwich plates and
the thick sandwich plates. For the model results that means that two values for each
quantity (mass m, bending stiffness Bx and transverse shear stiffness Gxz) are taken
as the value range in which the model’s results are located. For the thin sandwich
specimens (Spec. No. 1-8) ϕmin and ϕmax are determined as 0.4802 and 0.53. For the
thick sandwich specimens (Spec. No. 9-16) ϕmin and ϕmax are determined as 0.49089
and 0.52.
Furthermore, the measured machine path, which is assumed to represent the vertical

displacement at loading bar position is finally corrected with the help of test data in
a way that the resilience of the test machine’s cross-head is taken into account. The
measured machine path fs thus is corrected towards smaller values.
Table 5.2 shows the results for the masses, Table 5.3 those for the bending stiffnesses

and Table 5.4 those for the transverse shear stiffnesses.
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5 MODEL VALIDATION

Table 5.2: Masses: experiment vs. model

Exp. Model
m msm,min msm,max mgeom,min mgeom,max

[g] [g] [g] [g] [g]
Spec. No.

1 505.03 492.35 514.23 492 513.88
2 506.46 492.01 513.88 491.71 513.58
3 502.02 484.14 505.66 484.93 506.45
4 526.29 502.78 525.13 503.33 525.68
5 480.69 484.27 505.8 485.05 506.57
6 509.71 489.97 511.75 489.96 511.73
7 511.18 490.94 512.76 490.79 512.61
8 498.98 492.05 513.92 491.75 513.62
9 636.19 635.13 648.23 641.57 654.67
10 608.28 599.32 611.68 604.15 616.51
11 646.88 609.58 622.15 616.6 629.17
12 590.87 619.08 631.85 624.38 637.15
13 621.94 611.27 623.88 617.99 630.6
14 621.44 611.49 624.1 618.17 630.78
15 637.12 643.74 657.02 648.63 661.9
16 557.82 593.03 605.26 599.01 611.23
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5 MODEL VALIDATION

Table 5.3: Bending stiffnesses: experiment vs. model

Exp. Model
Bx,fm Bx,fs Bx,ε Bx,min Bx,max

[Nm2] [Nm2] [Nm2] [Nm2] [Nm2]
Spec. No.

1 393.94 373.53 411.14 426.25 439.67
2 368.81 368.37 408.73 425.96 439.37
3 348.84 378.22 410.81 419.4 432.6
4 385.34 373.97 323.24 435.54 449.25
5 380.73 364.21 401 419.5 432.71
6 394.91 381.56 410.74 424.44 437.81
7 386.68 373.5 392.94 425.03 438.41
8 384 380.09 430.95 426.25 439.67
9 1224.04 1143.29 1341.08 1533.87 1544.21
10 1145.67 1088.46 1224.43 1445.63 1455.37
11 1240.44 1147.04 1427.31 1471.24 1481.16
12 n.d. 1094.22 1415.04 1492.39 1502.45
13 n.d. 1124.93 1417.37 1477.14 1487.1
14 n.d. 1134.6 1382.43 1478.56 1488.53
15 n.d. 1136.35 1467.38 1552.78 1563.25
16 n.d. 1047.44 1373.85 1432.21 1441.86
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5 MODEL VALIDATION

Table 5.4: Transverse shear stiffnesses: experiment vs. model

Exp. Model
Gxz Gxz,min Gxz,max

[ N
mm2 ] [ N

mm2 ] [ N
mm2 ]

Spec. No.
1 180.69 316.99 318.46
2 165.63 316.99 318.46
3 213.88 316.99 318.46
4 -103.35 316.99 318.46
5 179.12 316.99 318.46
6 238.24 316.99 318.46
7 335.79 316.99 318.46
8 141.72 316.99 318.46
9 191.56 308.77 309.02
10 256.69 308.77 309.02
11 149.78 308.77 309.02
12 122.02 308.77 309.02
13 139.67 308.77 309.02
14 162.74 308.77 309.02
15 123.37 308.77 309.02
16 116.7 308.77 309.02
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5 MODEL VALIDATION

5.2 Discussion

Regarding the masses the model values generally are in good agreement with the actual
measured masses. The infused pure balsa plates A, B and C (Table 5.1) all show a
relative error of less than 10%. When comparing the relative errors with regard to
the two different used calculation approaches, the geometrical approach consistently
leads to lower errors independent of the plate’s thickness. Additionally, it can be seen
that the model’s mass is lower than the measured mass at all three plates. That
indicates that the mass estimation for the pure resin-infused balsa core plate leads to
lighter result than it is in reality. With respect to proper mass estimation during the
design phase of a rotor blade, this is actually worse than estimating a higher mass
because the need of accurate models on mass estimation rather originates from mass
underestimation since it is attended by higher actual acting mass loads. However, the
low number of tested plates here is not representative, but gives an impression, if the
used approaches tend to deliver proper mass results. The geometrical approach here
leads to higher masses than the smearing approach for the thick plate B, but both
approaches are somewhat equal, when comparing the modelled masses of the thin
plate C.
The model calculation of the total mass of sandwich plates includes the face sheet

mass. So by weighing the manufactured sandwich specimens it is no longer distin-
guishable, what the actual mass of the infused core is. Hence, the comparison of the
sandwich masses (Table 5.2) can only contribute to the validation of the total mass
determination. The comparison of the two applied approaches considering the core
thickness shows a tendency of the smearing approach to deliver lower results with
increasing core thickness. This fact however does not lead to a more critical under-
estimation for the sandwich in consequence since some of the thick specimen even
have a mass below the model’s minimum mass. So with increasing core thickness the
smearing approach seems to be more accurate.
Regarding the bending stiffness (Table 5.3) the values, which have been determined

by applying the bending line theory are not in good agreement with the range given by
the model, whereas the bending stiffness Bx,ε comes close to the model’s data. This
is plausible because by measuring the vertical deflection as the test machine path,
the resilience of the cross head may lead to a higher measured vertical deflection.
The strain gauges are independent of any resilience that may falsify the measured
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5 MODEL VALIDATION

displacement. So in comparison with the strain based bending stiffness the model is
quite accurate, although delivering slightly higher stiffnesses.
The shear stiffness represented by the transverse shear modulus shows the largest

discrepancy between experimental and model results (Table 5.4). The obtained dif-
ference might be explained by two reasons. On the one hand the experimental shear
stiffness is assumed to be determined as too low. Since its calculation bases on the
measured test machine path fs it can be shown that a correction of less than 1mm
already has a significant influence on the transverse shear stiffness towards higher
stiffnesses that come close to the model’s results. Hence, the cross head resilience is
critical here. On the other hand the model’s shear modulus almost entirely equals
the smeared transverse shear modulus GC,xz,sm of the infused core. The face sheets’
contribution to the transverse shear stiffness is neglectable as they carry mainly tensile
loads. The smeared shear stiffness in turn depends on the respective shear modulus
of balsa wood GC,xz. This quantity has been taken from the literature of Gibson and
Ashby and is based on a semi-empirical equation for wood in general [11, p. 418]. The
actual shear modulus of balsa wood might be lower, so the agreement of experiment
and model could be achieved by corrections in both experimental and model-based
calculation. Since the shear modulus is a material constant, the low difference of the
model’s shear modulus regarding the plate thickness can be seen as the shear carrying
amount of the face sheets.
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6 Conclusion and Future Research

The analytical model for the resin-infused balsa wood core as developed within the
scope of this thesis is supposed to deal with the two aims of modelling accurately the
resulting mass and the stiffnesses of a FRP sandwich plate. Experiments show that
the mass estimation by the model is quite accurate both when sandwich plates and
pure resin-infused balsa cores are modelled. The derived pure geometrical approach
does not show a significant difference in comparison to the smearing approach.
The smeared stiffnesses are highly depending on the stiffnesses of pure balsa. Thus

the model’s accuracy for the transverse shear modulus calculation is less accurate,
giving values roughly increased by a factor of 2 in relation to the experimental re-
sults. Furthermore, when performing bending tests the application of strain gauges is
preferable.
For future research it remains to explicit validate the smeared stiffness of the infused

balsa core plate. This validation could not be done by testing the sandwich specimens,
due to the fact that experimental results gained from the four point bending tests
describe the whole sandwich inclusive the face sheets. Hence further experiments
are necessary to determine the in-plane and out-of-plane stiffnesses of resin-infused
balsa wood plates. These tests shall include both tensile tests and shear tests. In
addition, the tensile and shear stiffnesses of pure balsa wood shall be investigated
experimentally, in particular the dependency on the wood’s orientation. Another
aspect of future extension of the model is the implementation of plate curvature. The
curved plate is assumed to take up a significantly higher amount of resin due to the
widening of the slits. When regarding the experimental set-up for four point bending
tests it could be shown that the test machine’s resilience and the resilience of the test
apparatus influence the machine path as measured by the LVDT. For more reliable
bending tests a possibility has to be found to measure the vertical displacement at the
contact position of specimen and loading bar.
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Appendix

Appendix A

Technical Data Sheet

SAERTEX
E-Glass X-E-778g/m2-1270mm
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TECHNISCHES DATENBLATT ENTWURF
Art.-Nr. 20006456 Art.-Bezeichnung X-E-778g/m²-1270mm

Textile Struktur 7006068 SAERTEX®

ARTIKELAUFBAU (nach EN 13473-1)
Lage Konstruktion Flächengewicht Toleranz Material
4 45 ° 384 g/m² +/- 5,0 % E-Glas 600 tex

3 90 ° 3 g/m² +/- 5,0 % E-Glas 68 tex

2 0 ° 1 g/m² +/- 5,0 % E-Glas 34 tex

1 -45 ° 384 g/m² +/- 5,0 % E-Glas 600 tex

Nähfaden 6 g/m² +/- 1 g/m² PES [Polyester] 76 dtex

Faserinput kann individuell festgelegt werden

WEITERE EIGENSCHAFTEN
Nähfeinheit 5,0 Nähbindung Franse Breite (nominal) 1.270 mm

Stichlänge 2,60 mm Gesamttoleranz 5,1 % Gesamtflächen-Gewicht 778 g/m²

Kennfaden¹ 7 ST gelb

¹Position kann individuell festgelegt werden

Etikettierung Jede Rolle ist mit einem Etikett in der Hülse versehen. Ein weiteres Etikett befindet
sich außen auf der Folie oder dem Karton.

Verpackung (Standard) Jede Rolle ist in Folie verpackt und auf eine Papphülse gewickelt. Weitere
Verpackungsoptionen können individuell festgelegt werden.

Lagerempfehlung Bei Orginalverpackung: Temperatur 15-35°C und 20-80% Luftfeuchtigkeit. Keine
Feuchtigkeit und direktes Sonnenlicht. Um Probleme mit Luftfeuchtigkeit oder
elektrostatischer Ladung zu vermeiden, sind Gelege unabhängig von den
Lagerbedingungen mind. 24h vor der Verarbeitung zu konditionieren.

SAERTEX GmbH & Co. KG ist nach ISO 9001:2008 zertifiziert und ist als ÖKOPROFIT-Betrieb 2016 ausgezeichnet.

Die SAERTEX GmbH & Co. KG verfügt über ein vom DNV GL zertifiziertes Prüflabor.

REINFORCING YOUR IDEAS



Appendix B

Technical Data Sheet

HEXION
EpikoteTM Resin MGS RIMR 035C and Epikure Curing
Agent MGS RIMR036, 0366, 037, 038, 038F
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